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About me: Niall Mc Phillips

Owner + CEO, Long Acre (founded 2015).

Co-owner + Director, Stephenson and Associates (founded 1995).

Based in Geneva, Switzerland.

• Oracle ACE ♠
• Background in Computer Science
• Working with Oracle database as a Developer and DBA since 

1989
• Developing database-centric web applications since 1995
• Developing with APEX since 2005 (HTML DB 1.6)
• Organiser of the Swiss APEX Meetup group
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Some of our clients
• UN – United Nations

• ILO - International Labour
Organization*

• WHO – World Health 
Organisation*

• ISSA – International  Social 
Services Association

• IEC - International 
Electrotechnical Commission*

• Royal Dutch Shell

• Addax Petroleum*

• APPA – African Petroleum 
Producers Association*

• DGH Gabon (government)*

• Nestlé

• Petronas

• ExxonMobil

* APEX
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Oracle Multimedia
• Available since Oracle8 (1997)

• Is an integral part of all Oracle databases up 
to 18c.

• It’s a one-stop shop – everything is already 
there inside your Oracle DB.
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Oracle multimedia object types

• ORACLE Multimedia object types are 
implemented as types inside the database

• Included in Oracle SE and EE editions and 
in 18c XE

• Are part of the ORDSYS schema
• Can be used as native columns in tables or 

as variables in PL/SQL
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Different Oracle Multimedia types

ORDSYS types
• ORDAudio
• ORDDoc
• ORDImage
• ORDVideo
• ORDDicom
• ORDSource
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Examining the ORDImage object type

Type definition
-------------------

-- TYPE ATTRIBUTES

-------------------

source              ORDSource,
height              INTEGER,

width               INTEGER,

contentLength       INTEGER,

fileFormat          VARCHAR2(4000),

contentFormat       VARCHAR2(4000),

compressionFormat   VARCHAR2(4000),

mimeType            VARCHAR2(4000),
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The Oracle Multimedia
ORDImage object type

ORDImage Methods available

checkProperties( )
copy( )
getCompressionFormat( )
getContentFormat( )
getContentLength( )
getDicomMetadata( )
getFileFormat( )
getHeight( )

getMetadata( )
getWidth( )
import( )
importFrom( )
process( )
processCopy( )
putMetadata( )
setProperties( )
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https://docs.oracle.com/cd/B28359_01/appdev.111/b28414/ch_imgref.htm
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Oracle Multimedia is dead!
• Born in 1997
• Lived a happy life as an integral part of the 

Oracle database for almost 24 years
• De-supported and removed as of Oracle 19c  
• ✝ R.I.P. Oracle Multimedia ✝

you will be sadly missed by many

*18c support still available until the end-of-life of 18c (June 2021, maybe longer with extended 
support?)
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Oracle Multimedia is dead!

Long live Multimedia in Oracle
with APEX and REST!
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Processing Images without Oracle 
Multimedia

What is essential for us
• image resizing
• image overlay

What would be nice to have
• Metadata extraction (XMP / EXIF / IPTC)
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The search for alternatives

• There are many non-Oracle alternatives 
using JavaScript, Python, Ruby, etc.

• However, we would like to stay within the 
Oracle ecosystem and are looking at how to 
do this with the minimum disruption
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REST-enabled
• Our conclusion is that the platform that 

would fit best with our environment is a 
REST-enabled platform

• Image manipulation that is currently done 
within the database will be replaced by 
manipulation outside of the database

• This will allow us to keep our precious data 
and metadata within Oracle.
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Photo Library history

• Originally developed in 2003 on Oracle9i 
using PL/SQL web toolkit and Oracle 
MultiMedia.

• New user interface in 2017 to prepare for 
the 2019 centenary 

• Video added in 2018
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Photo Library

• Leverage existing infrastructure (DB)
• Store approx. 40’000 photos
• Dates ranging from 1919 to present day
• Store high-res images without manipulation
• Automatically resize / transform (web, detail, 

watermark)
• Automatically extract metadata and insert 

into underlying database
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Let’s take a look

• Multimedia Download Platform front-end

• Both front-end and back-end are developed 
in APEX
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http://www.ilo.org/dyn/photolib/en/f?p=600817:1:0:::::
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Preparing for the end of Oracle 
Multimedia

• Replace the images in the database with 
BLOBs and process them in the cloud

• Change to data tables in our application 
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Cloud Processing
For our proof of concept, we will be using 

Cloudinary as a provider
https://cloudinary.com

There are many choices available for image 
processing in the cloud

See: Menno Hoogendijk’s recent blog post (11 Oct 2019)

https://blogs.oracle.com/apex/alternatives-
for-oracle-multimedia
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https://cloudinary.com/
https://blogs.oracle.com/apex/alternatives-for-oracle-multimedia
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Uploading the photos using APEX 
and the Oracle Autonomous Cloud

• Create an application in the Oracle 
Autonomous Cloud

• Create an image upload region

• Create a classic report region

21

Create an image table
drop table my_photos;

create table my_photos (id number, 

uploaded_on date,

mime_type varchar2(255),

name varchar2(400),

filename varchar2(400),

width  integer,

height  integer,

image_format varchar2(30),

uploaded_url varchar2(4000),

image_properties clob, -- json

thephoto blob, 

thumbnail blob,

watermark blob);

alter table my_photos add constraint pk_my_photos primary key (id) enable;
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Upload the images using APEX
• Create an simple upload region containing two items and a 

button

Px_PHOTO_UPLOAD - type file browse

Px_UPLOAD_ID – hidden

UPLOAD – button

• Create a process to get the uploaded file from the 
APEX_APPLICATION_TEMP_FILES table and move it to our 
own table along with a few basic metadata.
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Upload the images – then move to 
the my_photos table
Initial process to execute when a photo is uploaded.
Get the image(s) from the APEX tables store it in our table.  
declare

v_id my_photos.id%type;
begin

select seq_everything.nextval into v_id from dual;  

insert into my_photos (id, thePhoto, mime_type, filename, uploaded_on)
select v_id, 

blob_content,
mime_type,
filename,
created_on

from apex_application_temp_files
where name = :P111_PHOTO_UPLOAD;

delete from apex_application_temp_files where name = :P111_PHOTO_UPLOAD;
:P111_UPLOADED_ID := to_char(v_id);  -- store the ID for later
commit;

end;
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Make a report to see what has been 
uploaded
New Region – Classic Report

select id,

mime_type, 

filename, 

uploaded_on,

dbms_lob.getlength(thephoto) as  photo_size

from my_photos;
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Create a procedure to view the photo
This is one technique for viewing the photo directly
create or replace procedure showPhoto (p_id in my_photos.id%type) 

is

rec_photo my_photos%rowtype;

begin

select * into rec_photo

from my_photos

where id = p_id;

owa_util.mime_header (rec_photo.mime_type, false);

htp.p('Content-length: ' || 
to_char(dbms_lob.getlength(rec_photo.thephoto)));

owa_util.http_header_close;

wpg_docload.download_file (rec_photo.thephoto);

end showPhoto;

/

grant execute on showPhoto to ords_public_user;

26
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Modify the report to see the photo

New Region – Classic Report

select id,

mime_type, 

filename, 

uploaded_on,

dbms_lob.getlength(thephoto) as photo_size,

'<img src="'||'niall'||'.showPhoto?p_id='        

||trim(to_char(id))||'" />' as photo

from my_photos;

Result: giant photo, unusable for our purposes
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Modify the report to reduce the 
displayed size 
Add  width="300" to display a smaller version

select id,

…

'<img src="'||'niall'||'.showPhoto?p_id='        

||trim(to_char(id))

||'" width="300" />' as photo

from my_photos;

Result: Looks ok, but the entire full resolution photo has been 
passed via http to the browser and the resizing has been done 
by the browser when rendering
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Uploading the image to Cloudinary
using APEX_WEB_SERVICE

• Create a second page process to upload the photo 
to Cloudinary using APEX_WEB_SERVICE and 
REST API

• Oracle Autonomous Cloud already has the 
Cloudinary certificates installed.

For an on-premises database, you would need to
• a) import the certificate into an Oracle Wallet
• b) ensure that the Network ACLs allow you to execute the 

Web Service call.
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Uploading the image to Cloudinary
using APEX_WEB_SERVICE (1)
Process that passes the URL of the full resolution 
uploaded image to Cloudinary via REST

declare

v_clob clob;

begin

v_clob := apex_web_service.make_rest_request

(p_url => 'https://api.cloudinary.com/v1_1/longacre/image/upload?upload_preset=‘

||:G_UPLOAD_PRESET||'&file=‘

||apex_util.url_encode('https://'||owa_util.get_cgi_env('SERVER_NAME’)

||'/ords/niall.showPhoto?p_id=‘

||trim(:P111_UPLOADED_ID)),

p_http_method => 'GET’);

• upload_preset is a sort of secret key that I have defined as an application item
• v_clob receives the json response

30
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Uploading the image to Cloudinary
using APEX_WEB_SERVICE (2)

Typical JSON response after upload to Cloudinary

31

Uploading the image to Cloudinary
using APEX_WEB_SERVICE (3)
... continued from previous code slide…

-- parse the response and extract some interesting attributes

apex_json.parse(p_source => v_clob);

update my_photos -- save the new metadata

set uploaded_url = apex_json.get_varchar2(p_path => 'url'),

width            = apex_json.get_varchar2(p_path => 'width'),

height           = apex_json.get_varchar2(p_path => 'height'),

image_format = apex_json.get_varchar2(p_path => 'format'),

image_properties = v_clob

where id = to_number(:P111_UPLOADED_ID);

end;

Verify by adding the upload_url column to the classic report

32
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Resize the photo to 300px by calling 
a Cloudinary Web Service
• Add a process that will call the Cloudinary

REST API and ask it to resize the photo.

• To create a 300px wide thumbnail while 
preserving the aspectratio, we add /w_300 
to the URL

• We then save the result in a column named 
thumbNail

33

Resize the photo to 300px by calling 
a Cloudinary API Web Service

34



10/19/19

18

Modify the Report to display the 
now-populated thumbnail column

• Create a new procedure to display the new 
thumbnail column – showThumbnail

• Replace the showPhoto reference in the 
reports by showThumbnail

• Run the report, this time the amount of data 
being passed is exactly what is needed to 
show a 300px image.
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Add a watermark/overlay to an image
• Add a process that will call the Cloudinary

REST API and ask it to add a watermark

• Add /w_500 to the URL for a 500px wide 
image

• Add /l_text:Arial_40:watermarktext for the 
watermarked text

• Save the result in a column named 
watermark

36
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Extracting metadata
• The photos contain metadata (date, title, 

description, keywords) placed by the 
photographers.  

• 3 main metadata formats and photos
EXIF, IPTC and XMP

37

XMP metadata example

38
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XMP metadata example
Getting attributes from the 
<rdf:Description>

xmp:CreateDate
dc:title
dc:description
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XMP metadata example
Getting the keywords from <dc:keywords>

<dc:keywords>
<rdf:Bag>
<rdf:li>ILO</rdf:li>
<rdf:li>ILC</rdf:li>
<rdf:li>2014</rdf:li>
<rdf:li>opening</rdf:li>
<rdf:li>session</rdf:li>
<rdf:li>OIT</rdf:li>
<rdf:li>International Labour Organisation</rdf:li>

</rdf:Bag>
</dc:keywords>
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XMP metadata
• After extracted the metadata are simply 

inserted into the appropriate columns of their 
tables (e.g. date_taken, legend, etc.)
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Conclusion
• Oracle Multimedia is going away

• There are many alternatives both within and 
outside the Oracle Ecosystem

• The alternative that appears to give the most 
flexibility and allows us to keep substantial 
portions of the applications already 
developed is to use Cloud Services via 
REST and APEX.
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