
10/19/19

1

Long Live Multimedia with APEX and
REST!

(co-starring: Oracle Autonomous Cloud)

Presented on 18th October 2019
at

hroug 2019
in Rovinj, Croatia.

by
Niall Mc Phillips
Long Acre sàrl

niall.mcphillips@longacre.ch
@Niall_McP

1

About me: Niall Mc Phillips

Owner + CEO, Long Acre (founded 2015).

Co-owner + Director, Stephenson and Associates (founded 1995).

Based in Geneva, Switzerland.

• Oracle ACE ♠
• Background in Computer Science
• Working with Oracle database as a Developer and DBA since

1989
• Developing database-centric web applications since 1995
• Developing with APEX since 2005 (HTML DB 1.6)
• Organiser of the Swiss APEX Meetup group

2

10/19/19

2

Some of our clients
• UN – United Nations

• ILO - International Labour
Organization*

• WHO – World Health
Organisation*

• ISSA – International Social
Services Association

• IEC - International
Electrotechnical Commission*

• Royal Dutch Shell

• Addax Petroleum*

• APPA – African Petroleum
Producers Association*

• DGH Gabon (government)*

• Nestlé

• Petronas

• ExxonMobil

* APEX

3

4

10/19/19

3

5

Oracle Multimedia
• Available since Oracle8 (1997)

• Is an integral part of all Oracle databases up
to 18c.

• It’s a one-stop shop – everything is already
there inside your Oracle DB.

6

10/19/19

4

Oracle multimedia object types

• ORACLE Multimedia object types are
implemented as types inside the database

• Included in Oracle SE and EE editions and
in 18c XE

• Are part of the ORDSYS schema
• Can be used as native columns in tables or

as variables in PL/SQL

7

Different Oracle Multimedia types

ORDSYS types
• ORDAudio
• ORDDoc
• ORDImage
• ORDVideo
• ORDDicom
• ORDSource

8

10/19/19

5

Examining the ORDImage object type

Type definition

-- TYPE ATTRIBUTES

source ORDSource,
height INTEGER,

width INTEGER,

contentLength INTEGER,

fileFormat VARCHAR2(4000),

contentFormat VARCHAR2(4000),

compressionFormat VARCHAR2(4000),

mimeType VARCHAR2(4000),

9

The Oracle Multimedia
ORDImage object type

ORDImage Methods available

checkProperties()
copy()
getCompressionFormat()
getContentFormat()
getContentLength()
getDicomMetadata()
getFileFormat()
getHeight()

getMetadata()
getWidth()
import()
importFrom()
process()
processCopy()
putMetadata()
setProperties()

10

https://docs.oracle.com/cd/B28359_01/appdev.111/b28414/ch_imgref.htm

10/19/19

6

Oracle Multimedia is dead!
• Born in 1997
• Lived a happy life as an integral part of the

Oracle database for almost 24 years
• De-supported and removed as of Oracle 19c
• ✝ R.I.P. Oracle Multimedia ✝

you will be sadly missed by many

*18c support still available until the end-of-life of 18c (June 2021, maybe longer with extended
support?)

11

Oracle Multimedia is dead!

Long live Multimedia in Oracle
with APEX and REST!

12

10/19/19

7

Processing Images without Oracle
Multimedia

What is essential for us
• image resizing
• image overlay

What would be nice to have
• Metadata extraction (XMP / EXIF / IPTC)

13

The search for alternatives

• There are many non-Oracle alternatives
using JavaScript, Python, Ruby, etc.

• However, we would like to stay within the
Oracle ecosystem and are looking at how to
do this with the minimum disruption

14

10/19/19

8

REST-enabled
• Our conclusion is that the platform that

would fit best with our environment is a
REST-enabled platform

• Image manipulation that is currently done
within the database will be replaced by
manipulation outside of the database

• This will allow us to keep our precious data
and metadata within Oracle.

15

Photo Library history

• Originally developed in 2003 on Oracle9i
using PL/SQL web toolkit and Oracle
MultiMedia.

• New user interface in 2017 to prepare for
the 2019 centenary

• Video added in 2018

16

10/19/19

9

Photo Library

• Leverage existing infrastructure (DB)
• Store approx. 40’000 photos
• Dates ranging from 1919 to present day
• Store high-res images without manipulation
• Automatically resize / transform (web, detail,

watermark)
• Automatically extract metadata and insert

into underlying database

17

Let’s take a look

• Multimedia Download Platform front-end

• Both front-end and back-end are developed
in APEX

18

http://www.ilo.org/dyn/photolib/en/f?p=600817:1:0:::::

10/19/19

10

Preparing for the end of Oracle
Multimedia

• Replace the images in the database with
BLOBs and process them in the cloud

• Change to data tables in our application

19

Cloud Processing
For our proof of concept, we will be using

Cloudinary as a provider
https://cloudinary.com

There are many choices available for image
processing in the cloud

See: Menno Hoogendijk’s recent blog post (11 Oct 2019)

https://blogs.oracle.com/apex/alternatives-
for-oracle-multimedia

20

https://cloudinary.com/
https://blogs.oracle.com/apex/alternatives-for-oracle-multimedia

10/19/19

11

Uploading the photos using APEX
and the Oracle Autonomous Cloud

• Create an application in the Oracle
Autonomous Cloud

• Create an image upload region

• Create a classic report region

21

Create an image table
drop table my_photos;

create table my_photos (id number,

uploaded_on date,

mime_type varchar2(255),

name varchar2(400),

filename varchar2(400),

width integer,

height integer,

image_format varchar2(30),

uploaded_url varchar2(4000),

image_properties clob, -- json

thephoto blob,

thumbnail blob,

watermark blob);

alter table my_photos add constraint pk_my_photos primary key (id) enable;

22

10/19/19

12

Upload the images using APEX
• Create an simple upload region containing two items and a

button

Px_PHOTO_UPLOAD - type file browse

Px_UPLOAD_ID – hidden

UPLOAD – button

• Create a process to get the uploaded file from the
APEX_APPLICATION_TEMP_FILES table and move it to our
own table along with a few basic metadata.

23

Upload the images – then move to
the my_photos table
Initial process to execute when a photo is uploaded.
Get the image(s) from the APEX tables store it in our table.
declare

v_id my_photos.id%type;
begin

select seq_everything.nextval into v_id from dual;

insert into my_photos (id, thePhoto, mime_type, filename, uploaded_on)
select v_id,

blob_content,
mime_type,
filename,
created_on

from apex_application_temp_files
where name = :P111_PHOTO_UPLOAD;

delete from apex_application_temp_files where name = :P111_PHOTO_UPLOAD;
:P111_UPLOADED_ID := to_char(v_id); -- store the ID for later
commit;

end;

24

10/19/19

13

Make a report to see what has been
uploaded
New Region – Classic Report

select id,

mime_type,

filename,

uploaded_on,

dbms_lob.getlength(thephoto) as photo_size

from my_photos;

25

Create a procedure to view the photo
This is one technique for viewing the photo directly
create or replace procedure showPhoto (p_id in my_photos.id%type)

is

rec_photo my_photos%rowtype;

begin

select * into rec_photo

from my_photos

where id = p_id;

owa_util.mime_header (rec_photo.mime_type, false);

htp.p('Content-length: ' ||
to_char(dbms_lob.getlength(rec_photo.thephoto)));

owa_util.http_header_close;

wpg_docload.download_file (rec_photo.thephoto);

end showPhoto;

/

grant execute on showPhoto to ords_public_user;

26

10/19/19

14

Modify the report to see the photo

New Region – Classic Report

select id,

mime_type,

filename,

uploaded_on,

dbms_lob.getlength(thephoto) as photo_size,

'<img src="'||'niall'||'.showPhoto?p_id='

||trim(to_char(id))||'" />' as photo

from my_photos;

Result: giant photo, unusable for our purposes

27

Modify the report to reduce the
displayed size
Add width="300" to display a smaller version

select id,

…

'<img src="'||'niall'||'.showPhoto?p_id='

||trim(to_char(id))

||'" width="300" />' as photo

from my_photos;

Result: Looks ok, but the entire full resolution photo has been
passed via http to the browser and the resizing has been done
by the browser when rendering

28

10/19/19

15

Uploading the image to Cloudinary
using APEX_WEB_SERVICE

• Create a second page process to upload the photo
to Cloudinary using APEX_WEB_SERVICE and
REST API

• Oracle Autonomous Cloud already has the
Cloudinary certificates installed.

For an on-premises database, you would need to
• a) import the certificate into an Oracle Wallet
• b) ensure that the Network ACLs allow you to execute the

Web Service call.

29

Uploading the image to Cloudinary
using APEX_WEB_SERVICE (1)
Process that passes the URL of the full resolution
uploaded image to Cloudinary via REST

declare

v_clob clob;

begin

v_clob := apex_web_service.make_rest_request

(p_url => 'https://api.cloudinary.com/v1_1/longacre/image/upload?upload_preset=‘

||:G_UPLOAD_PRESET||'&file=‘

||apex_util.url_encode('https://'||owa_util.get_cgi_env('SERVER_NAME’)

||'/ords/niall.showPhoto?p_id=‘

||trim(:P111_UPLOADED_ID)),

p_http_method => 'GET’);

• upload_preset is a sort of secret key that I have defined as an application item
• v_clob receives the json response

30

10/19/19

16

Uploading the image to Cloudinary
using APEX_WEB_SERVICE (2)

Typical JSON response after upload to Cloudinary

31

Uploading the image to Cloudinary
using APEX_WEB_SERVICE (3)
... continued from previous code slide…

-- parse the response and extract some interesting attributes

apex_json.parse(p_source => v_clob);

update my_photos -- save the new metadata

set uploaded_url = apex_json.get_varchar2(p_path => 'url'),

width = apex_json.get_varchar2(p_path => 'width'),

height = apex_json.get_varchar2(p_path => 'height'),

image_format = apex_json.get_varchar2(p_path => 'format'),

image_properties = v_clob

where id = to_number(:P111_UPLOADED_ID);

end;

Verify by adding the upload_url column to the classic report

32

10/19/19

17

Resize the photo to 300px by calling
a Cloudinary Web Service
• Add a process that will call the Cloudinary

REST API and ask it to resize the photo.

• To create a 300px wide thumbnail while
preserving the aspectratio, we add /w_300
to the URL

• We then save the result in a column named
thumbNail

33

Resize the photo to 300px by calling
a Cloudinary API Web Service

34

10/19/19

18

Modify the Report to display the
now-populated thumbnail column

• Create a new procedure to display the new
thumbnail column – showThumbnail

• Replace the showPhoto reference in the
reports by showThumbnail

• Run the report, this time the amount of data
being passed is exactly what is needed to
show a 300px image.

35

Add a watermark/overlay to an image
• Add a process that will call the Cloudinary

REST API and ask it to add a watermark

• Add /w_500 to the URL for a 500px wide
image

• Add /l_text:Arial_40:watermarktext for the
watermarked text

• Save the result in a column named
watermark

36

10/19/19

19

Extracting metadata
• The photos contain metadata (date, title,

description, keywords) placed by the
photographers.

• 3 main metadata formats and photos
EXIF, IPTC and XMP

37

XMP metadata example

38

10/19/19

20

XMP metadata example
Getting attributes from the
<rdf:Description>

xmp:CreateDate
dc:title
dc:description

39

XMP metadata example
Getting the keywords from <dc:keywords>

<dc:keywords>
<rdf:Bag>
<rdf:li>ILO</rdf:li>
<rdf:li>ILC</rdf:li>
<rdf:li>2014</rdf:li>
<rdf:li>opening</rdf:li>
<rdf:li>session</rdf:li>
<rdf:li>OIT</rdf:li>
<rdf:li>International Labour Organisation</rdf:li>

</rdf:Bag>
</dc:keywords>

40

10/19/19

21

XMP metadata
• After extracted the metadata are simply

inserted into the appropriate columns of their
tables (e.g. date_taken, legend, etc.)

41

Conclusion
• Oracle Multimedia is going away

• There are many alternatives both within and
outside the Oracle Ecosystem

• The alternative that appears to give the most
flexibility and allows us to keep substantial
portions of the applications already
developed is to use Cloud Services via
REST and APEX.

42

10/19/19

22

43

