accenture ORACLE CLOUD INFRASTRUCTURE (OCI) PERFORMANCE COMPARISON AND AUTONOMOUS DATABASE

PASI JAAKKOLA SALES AND SOLUTION LEAD ACCENTURE ENKITEC GROUP

October 2019, Konferencija HrOUG2019

Pasi Jaakkola

Accenture

Finland

accenture

- OUGF President since March 2015
- Accenture Sales and Solution Lead Accenture Enkitec Group
- www.ougf.fi, www.fsdc.fi
- What else?
 - Being a father for 3 sons and a princess and a husband for a lovely wife

Diamond

Global Cloud Elite

Partner

ORACLE

WHAT IS ORACLE AUTONOMOUS DATABASE CLOUD

Compared to traditional database technology, an autonomous database cloud has greater availability greater security, and lower operating costs

Other industry terms for autonomous database are self-driving database, self-repairing and self-securing

- Self-driving means that the database can automatically provision, or deploy databases; and monitor, back-up, recover, and troubleshoot those databases. It also means to instantly grow and shrink compute or storage without downtime.
- Self-securing refers to adaptive AI-enabled threat detection and remediation, along with automatic data encryption. A self-security database can also apply security patches automatically.
- Self-repairing databases are automatically protected from downtime. With up to 99.995 percent availability, a self-repairing database experiences less than 2.5 minutes of downtime per month, including planned maintenance.

ORACLE AUTONOMOUS CLOUD

INNOVATION IN NEW IT

Why move to the Oracle Autonomous Cloud

Ensure maximum uptime and performance of the database. 99.995 percent uptime including maintenance, guaranteed.

2 Reduce 90% of the labour cost. Eliminate manual database management and human errors. No more manual routine tasks! Reduce the number of DBAs needed to manage its databases.

Ensure maximum security of the database, including patches and fixes. There is no On/Off button for security. Security in a cloud database locks out bad actors through multi-layered controls and best practices implementations. **Fully automated.** Eliminate manual, error-prone management and tuning tasks with automation.

05 Innovation. Allow DBAs to apply their expertise to higher level functions and help the business save money by redeploy them to a variety of tasks that are deemed more strategic.

Machine Learning. An autonomous database integrates monitoring, management, and analytics capabilities that leverage machine learning and artificial intelligence techniques.

WHAT DO WE SEE IN THE MARKET?

Most clients will move their Oracle databases and applications on top of those databases to the cloud in the next 2-5 years as a result of the following 3 key drivers:

REDUCING COST

Lowering total Cost of Ownership (TCO) by leveraging Cloud

- Lower license fees
- Optimized consumption of infrastructure through autonomous architectures
- Lower management and operation costs

vor

RENEWING and **TRANSFORMING**

the Core Database Platform

- Oracle installed base as cloud entry-point
- Avoidance of extensive cloud provider comparisons

INNOVATING

faster in an agile way by leveraging the Autonomous Data Cloud Services and DevOps for a New Data Platform

REDUCING COST

Lowering total Cost of Ownership (TCO) by leveraging Cloud

- Lower license fees
- Optimized consumption of infrastructure through autonomous architectures
- Lower management and operation costs

RENEWING and **TRANSFORMING**

the Core Database Platform

- Oracle installed base as cloud entry-point
- Avoidance of extensive cloud provider comparisons

INNOVATING

faster in an agile way by leveraging the Autonomous Data Cloud Services and DevOps for a New Data Platform

WHAT IS ORACLE RESPONSE TO DEMAND?

6

EXADATA INNOVATIONS

Exadata Cloud: Most Powerful Database + Platform

EXADATA INNOVATIONS

10 Years of Innovation. So Far Ahead there is no Second Place

- First and only smart scale-out storage
- First and only RDMA and InfiniBand for converged networking
- First and only OLTP Machine
- First ever enterprise platform to use NVMe Flash
- First and only In-Memory Performance in Storage
- First and only Mission Critical Cloud at Customer Platform
- Only Enterprise Storage to make the leap to Public Cloud
- Only Database Machine to make the leap to Public Cloud
- And now: Only Database Machine to run Autonomous Database

IS ORACLE REALLY FAST?

ACCENTURE TESTED ORACLE CLOUD 2016, 2017, 2018 AND 2019

ACCENTURE STUDY 2016 RESULTS THE ENTERPRISE CLOUD IS HERE! EXECUTIVE SUMMARY

Oracle's DBaaS solutions (DBCS •--and Exadata Cloud Service) have standard tuning delivered out of the box

Exadata Cloud Service provides •-the same level of performance as that of the on-premises solution Oracle's Compute Cloud showed consistent high performance

 The underlying storage solution for OPC appears to be a clear advantage.

Bare Metal Cloud provides a powerful, enterprise grade solution for performance hungry applications

1. ORACLE'S CLOUD IS FAST (OCI-C)

Oracle's Compute Cloud showed consistent high performance

When executing the 200 user test with the same basic database tuning across all instances, Oracle Cloud solutions completed as much as 3.4 times as many transactions during the 60 minute window

	laaS		DBaaS		
	Oracle laaS	Leading Cloud Provider	Oracle DBCS	Leading DBaaS Provider	
vCPU	4	4	4	4	
Memory	30GB	30GB	30GB	30GB	
SGA	6GB	6GB	12GB AMM	12GB AMM	
Disk Type	Latency Optimized	General Disk	Throughput Optimized	General Disk	
Total Transactions	4,837,067.00	1,397,270.00	3,598,654.00	1,419,827.00	
Transactions per Second	1,343.63	388.13	999.63	394.40	
Avg Response Time (ms)	75.08	457.85	Copyright © 2017 Acc 125.63	enture All rights reserved. 428.76	

2. EXADATA IN THE CLOUD IS THE REAL DEAL

ACCENTURE ORACLE BUSINESS GROUP: 2017 ORACLE CLOUD WHITE PAPER

https://www.accenture.com/gb-en/accenture-oracle-business-group

Enterprise Workload Meets the Cloud

- Nearly half of the worlds data runs on Oracle databases
- 2.5 quintillion bytes of data being generated every day
- The performance and scalability of the database in the cloud is increasingly important
- This white paper builds on top of last years that showed Oracle's generic laaS share was up to 8x faster for running an Oracle Database
- This focuses on Oracle Database, and associated applications and networking, in the cloud.
- Accenture was able to execute OLTP transactions up to 8 times faster, compared to the other cloud provider.

	Leading Cloud Provider	Oracle Cloud Infrastructure Classic	Oracle Cloud Infrastructure
vCPU	4	4	4
SGA	6GB	6GB	6GB
Disk Type	General Disk	Latency Optimized	NVMe Attached
Disk Size	612 GB	612 GB	612GB
Total Transactions	1,397,270	4,837,067	10,916,571
Transactions Per Second	383.13	1,343.63	3,032.38
Total List Price Per Month	\$345.88	\$200.00	\$228.12

ACCENTURE ORACLE BUSINESS GROUP: 2017 ORACLE CLOUD WHITE PAPER

Enterprise Workload Meets the Cloud

- "The network is the computer."
- Oracle Cloud Infrastructure provided much lower latency than the other cloud when connecting between zones or different data centres within a single region.

THE DAWN OF THE INTELLIGENT ENTERPRISE

A team of Accenture's Oracle data specialists ran a performance test of the beta version of the **Autonomous Data Warehouse Cloud (ADWC)** on a real application, running real-world workloads.

Data was replicated on the Oracle Database Cloud Service and the ADWC to provide real-life application usage experience. The data was then extrapolated and expanded to nine years' worth of data to test the performance.

14 times performance acceleration running these workloads

Copyright © 2018 Accenture. All rights reserved.

Test

ADDITIONAL OBSERVATIONS AND TESTING APPROACH OF ACCENTURE

- The Oracle Autonomous Data Warehouse interface is simple and clear, inserting data takes less time than one can imagine and analytical reports run faster than in any other similar environment
- Had to perform some additional steps to connect to OACS [Oracle Analytics Cloud Service] but this is likely due to beta version of the connector
- Must be careful not to run OLTP transactions

Testing approach of Accenture:

- Utilizing an existing cloud based analytics application called PRETT running on OACS
- Data will be replicated in DBCS and ADWC to provide a real life application usage experience
- The data will then be extrapolated and expand based on that existing application to simulate ADWC functionality

ACCENTURE IS SIMPLY IMPRESSED WITH THE ORACLE AUTONOMOUS DATABASE

ORACLE^{*} Autonomous Data Warehouse Cloud

G Overview Activity & Administration

ACCENTDB | Sign out

Monitor			Mor	itored SQL	
Show o	letails Download report	Cancel execution		Auto refresh 0 seconds	 ✓ Ø Ø ▼
	STATUS	SQL TEXT	DURATION	START TIME	END TIME
1	O EXECUTING	SELECT client, COUNT(*) OVER (PARTITION BY price) CLIENT_COUNT FROM sales WHE	2.02 s	Wed, 28 Feb 2018 15:37:13 GMT	
2	✓ DONE (ALL ROWS)	SELECT max(price) most_expensive_order from sales	3 s 🔳	Wed, 28 Feb 2018 15:37:03 GMT	Wed, 28 Feb 2018 15:3
3	✓ DONE (ALL ROWS)	select min(minbkt),maxbkt,substrb(dump(min(val),16,0,64),1,240) minval,substrb(dump(2 s 🔳	Wed, 28 Feb 2018 15:36:01 GMT	Wed, 28 Feb 2018 15:3
4	✓ DONE (ALL ROWS)	select min(minbkt),maxbkt,substrb(dump(min(val),16,0,64),1,240) minval,substrb(dump(2 s 🔳	Wed, 28 Feb 2018 15:35:59 GMT	Wed, 28 Feb 2018 15:3
5	✓ DONE (ALL ROWS)	select substrb(dump(val,16,0,64),1,240) ep, cnt from (select /*+ no_expand_table(t) inde	1 s 🛛	Wed, 28 Feb 2018 15:35:58 GMT	Wed, 28 Feb 2018 15:3
6	✓ DONE (ALL ROWS)	select /*+ no_parallel(t) no_parallel_index(t) dbms_stats cursor_sharing_exact use_weak_	1 s 🛛	Wed, 28 Feb 2018 15:35:57 GMT	Wed, 28 Feb 2018 15:3
7	✓ DONE	insert /*+ append */ into sys.ora_temp_5_ds_93 SELECT /*+ no_parallel(t) no_parallel_in	23 s	Wed, 28 Feb 2018 15:35:34 GMT	Wed, 28 Feb 2018 15:3
8	✓ DONE	DECLARE SqlDevBind1Z_1 VARCHAR2(32767):=:SqlDevBind1ZInit1; SqlDevBind1Z_2 VA	30 s	Wed, 28 Feb 2018 15:35:33 GMT	Wed, 28 Feb 2018 15:3

The Oracle Autonomous Data Warehouse interface contains all necessary capabilities for a nonprofessional database user to create its own data marts and run analytical reports on the data

(1-8 of 8 items) K < 1 > > >

ADVISOR RECOMMENDATIONS WITH THE ORACLE AUTONOMOUS DATABASE

Query Result	x							
📌 📇 🔞 🙀 SQL All Rows Fetched: 25 in 0,069 seconds								
0WN	ER & REC_ID	TASK_ID	TASK_NAME	EXECUTION_NAME	FINDING_ID	♦ TYPE	RANK PARENT_RE	C_IDS 🚯 BENEFIT_TYPE
1 5YS	21	3	AUTO_STATS_ADVISOR_TASK	EXEC_15	21	(null)	0 (null)	Enable maintenance windows using DBMS_SCHEDULER PL/SQL package or through Oracle Enterprise Manager.
2 3YS	22	3	AUTO_STATS_ADVISOR_TASK	EXEC_15	22	(null)	0 (null)	Set the CONCURRENT preference.
3 3YS	23	3	AUTO_STATS_ADVISOR_TASK	EXEC_15	23	(null)	0 (null)	Set the value of preference GRANULARITY to 'AUTO'.
4 3YS	24	3	AUTO_STATS_ADVISOR_TASK	EXEC_15	24	(null)	0 (null)	Set the value of preference NO_INVALIDATE to 'DBMS_STATS.AUTO_INVALIDATE'.
5 3YS	25	3	AUTO_STATS_ADVISOR_TASK	EXEC_15	25	(null)	0 (null)	Set the value of preference METHOD_OPT to 'FOR ALL COLUMNS SIZE AUTO'.
6 3YS	5	3	AUTO_STATS_ADVISOR_TASK	EXEC_2	5	(null)	0 (null)	Enable maintenance windows using DBMS_SCHEDULER PL/SQL package or through Oracle Enterprise Manager.
7 3YS	6	3	AUTO_STATS_ADVISOR_TASK	EXEC_2	6	(null)	0 (null)	Set the CONCURRENT preference.
8 3YS	7	3	AUTO_STATS_ADVISOR_TASK	EXEC_2	7	(null)	0 (null)	Set the value of preference NO_INVALIDATE to 'DBMS_STATS.AUTO_INVALIDATE'.
9 3YS	8	3	AUTO_STATS_ADVISOR_TASK	EXEC_2	8	(null)	0 (null)	Set the value of preference METHOD_OPT to 'FOR ALL COLUMNS SIZE AUTO'.
10 3YS	13	3	AUTO_STATS_ADVISOR_TASK	EXEC_4	13	(null)	0 (null)	Enable maintenance windows using DBMS_SCHEDULER PL/SQL package or through Oracle Enterprise Manager.
11 3YS	14	3	AUTO_STATS_ADVISOR_TASK	EXEC_4	14	(null)	0 (null)	Set the CONCURRENT preference.
12 5YS	15	3	AUTO_STATS_ADVISOR_TASK	EXEC_4	15	(null)	0 (null)	Set the value of preference NO_INVALIDATE to 'DBMS_STATS.AUTO_INVALIDATE'.
13 3YS	16	3	AUTO_STATS_ADVISOR_TASK	EXEC_4	16	(null)	0 (null)	Set the value of preference METHOD_OPT to 'FOR ALL COLUMNS SIZE AUTO'.
14 3YS	1	3	AUTO_STATS_ADVISOR_TASK	EXEC_1	1	(null)	0 (null)	Enable maintenance windows using DBMS_SCHEDULER PL/SQL package or through Oracle Enterprise Manager.
15 3YS	2	3	AUTO_STATS_ADVISOR_TASK	EXEC_1	2	(null)	0 (null)	Set the CONCURRENT preference.

STATUS	SQL TEXT	DURATION	START TIME
	select * from V\$DIAG_OPT_TRACE_RECORDS	12.53 min	Sat, 22 Sep 2018 12:59:20 GMT

DBAs have access to DBA_ADVISOR_RECOMMENDATIONS, DBA_SCHEDULER_JOBS, V\$DIAG_OPT_TRACE_RECORDS, V\$DIAG_SQL_TRACE_RECORDS There is no access to AWR views, DBA_AUTOTASK_JOB_HISTORY and no SQL Trace

FEATURE COMPARISON

COMES WITH PRE-BUILT CONNECTOR TO THE DATA WAREHOUSE CLOUD

TESTING APPROACH

Utilizing an existing cloud based analytics application called PRETT [Platform Resource Enablement Tracking Tool] running on OACS [Oracle Analytics Cloud Service]. Data will be replicated in DBCS and ADWC to provide a real life application usage experience

The data will then be extrapolated and expand based on that existing application to simulate ADWC functionality.

SPRINT 1 BASELINE

SPRINT 2 EXTRAPOLATE

- Compare like to like data volume in OACS[DBCS] to OACS[ADWC]
- 3 Month Data volume
- Run and compare performance in OACS[ADWC] and compare with baseline OACS[DBCS] information
- Create 9 years of data on ADWC based on the 3 month live data to then compare performance on high volume data.

TESTING RESULTS

Table 1

	Other Cloud		C	OCI Servers	ADW		
Storage Type	Standard Disk	SSD	Block Storage	NVME SSD	Exadata Storage	Exadata Storage	
Storage Size	1 TB	1 TB	1 TB	6.4 TB	1 TB	1 TB	
CPUs	16 vCPU	16 vCPU	8 OCPU	8 OCPU	8 OCPU	2 OCPU	
Memory	128 GB	128 GB	120 GB	120 GB	N/A	N/A	

Table 2

	c	Other Cloud	c	OCI Servers	ADW		
	Standard Disk	SSD	Block Storage	NVME SSD	Exadata Storage (8 OCPU)	Exadata Storage (2 OCPU)	
Queries/Hour	-	65	52	1,264	11,975	2,453	

Table 3

		Other Cloud		0	CI Servers	ADW		
Storag Type	ge	Standard Disk	SSD	Block Storage	NVME SSD	Exadata Storage	Exadata Storage	
Stora	ge Size	1 TB	1 TB	1 TB	6.4 TB	1 TB	1 TB	
CPUs		16 vCPU	16 vCPU	8 OCPU	8 OCPU	8 OCPU	2 OCPU	
Memo	bry	128 GB	128 GB	120 GB	120 GB	N/A	N/A	
Comm	nitment Term	36 Months	36 Months	None	None	36 Months	None	
3 Yr D	B Cost	\$830,000.00	\$830,000.00	\$415,000.00	\$415,000.00	-	-	
	Infrastructure	\$390.64	\$446.96	\$232.37	\$744.60	\$8,465.82	\$3,901.49	
st	Amortized DB Cost	\$23,055.56	\$23,055.56	\$11,527.78	\$11,527.78	-	-	
žů	Amortized Total	\$23,446.20	\$23,502.52	\$11,760.15	\$12,272.38	\$8,465.82	\$3,901.49	

accenture

DESTINATION: AUTONOMOUS ORACLE DATABASE PERFORMANCE IS

Test

#4

COST-EFFECTIVE AND HIGH-POWERED

		Other Cloud		0	CI Servers	ADW	
Storaç Type	је	Standard Disk	SSD	Block Storage	NVME SSD	Exadata Storage	Exadata Storage
Stora	ge Size	1 TB	1 TB	1 TB	6.4 TB	1 TB	1 TB
CPUs		16 vCPU	16 vCPU	8 OCPU	8 OCPU	8 OCPU	2 OCPU
Memo	ory	128 GB	128 GB	120 GB	120 GB	N/A	N/A
Comn	nitment Term	36 Months	36 Months	None	None	36 Months	None
3 Yr D	B Cost	\$330,000.00	\$330,000.00	\$165,000.00	\$165,000.00	-	-
	Infrastructure	\$390.64	\$446.96	\$232.37	\$744.60	\$8,465.82	\$3,901.49
st	Amortized DB Cost	\$9,166.67	\$9,166.67	\$4,583.33	\$4,583.33	-	-
žů	Amortized Total	\$9,557.31	\$9,613.63	\$4,815.70	\$5,327.93	\$8,465.82	\$3,901.49

Table 5

	Other Cloud		c	OCI Servers	ADW	
Storage Type	Standard Disk	SSD	Block Storage	NVME SSD	Exadata Storage (8 OCPU)	Exadata Storage (2 OCPU)
With Database	Purchase					
Amortized Monthly Cost	\$23,446.20	\$23,502.52	\$11,760.15	\$12,272.38	\$8,465.82	\$3,901.49
Queries/ Hour	-	65	52	1,264	11,975	2,453
Cost/ Hour	\$32.12	\$32.20	\$16.11	\$16.81	\$11.60	\$5.34
Cost/ Query	N/A	\$0.4953	\$0.3098	\$0.0133	\$0.0010	\$0.0022
Without Datab	ase Purchase					
Amortized Monthly Cost	\$9,557.31	\$9,613.63	\$4,815.70	\$5,327.93	\$8,465.82	\$3,901.49
Queries/ hour	-	65	52	1,264	11,975	2,453
Cost/ Hour	\$13.09	\$13.17	\$6.60	\$7.30	\$11.60	\$5.34
Cost/Query	N/A	\$0.2026	\$0.1269	\$0.0058	\$0.0010	\$0.0022

AND HIGH-POWERED

DESTINATION: AUTONOMOUS ORACLE DATABASE PERFORMANCE IS COST-EFFECTIVE

IS ORACLE REALLY FAST?

OK, IT'S FAST AND CHEAP BUT WHAT ELSE?

	ADW	ATP	
📫 Primary Goal	Fast Complex Analytics	Fast Transaction Processing	
TI Data Formats	Columnar	Row	
Data Access Acceleration	Creates Data Summaries	RDMA for messaging and IO	
🚟 Memory Usage	Parallel Joins and Aggregations	Data Caching to Avoid IO	
Statistics	Automatically manages optimizer statistics as data change		

Autonomous Optimizations - Specialized by Workload

	ADW	ATP
-	Columnar Format	Row Format
Ē	Automatically Compressed	No Compression by Default
	Creates Data Summaries	Creates Indexes*
	Memory Speeds Joins, Aggs	Memory for Caching to Avoid IO

Statistics updated in real-time while preventing plan regressions

* Coming Soon in Oracle Database 19c

Automatic Indexing in Oracle DB 19c

https://juliandontcheff.wordpress.com/2019/04/23/what-else-besides-automatic-indexing-is-new-in-oracle-database-19c/ https://blogs.oracle.com/oracle-database/oracle-database-19c-now-available-on-oracle-exadata

Four Areas of Self-Securing of Autonomous Databases

Oracle encrypt customer data everywhere: in motion, at rest, and in backups. The encryption keys are managed automatically, without requiring any customer intervention. And **CRACLE**

Four Areas of Self-Automation of Autonomous Databases

	\sim		
(7	7	9
	h	h	

Automatic provisioning: pluggable databases Automatic scaling: PDB resource manager

Automatic tuning: SQL Plan Management, Adaptive Plans, SQL Tuning Advisor – Automatic SQL Tuning, Storage Indexes, Automatic Storage Management, Automatic detection and correction of regressions due to plan changes, Automatically tune memory, process, sessions

Automatic Fault Tolerant Failover: RAC and Data Guard Automatically kill run-away transactions and SQL Automatically kill inactive session

Automatic Backup and Recovery: RMAN, Flashback

Seven Areas of Self-Repairing of Autonomous Databases

	$(\overrightarrow{\lambda})$	
Outage	Key Feature	Potential Downtime
Server Outage (HA)	RAC	Near-Zero
Regional Outage, Disaster Recovery	ADG	Seconds
Data Corruption	ADG	Zero
Patches (Updates)	RAC	Near-Zero
Database Upgrade	ADG	Seconds
Table/Index Changes	Redef	Zero
User Error	Flashback	Time Since Error

WHAT IS STOPPING YOU START?

https://valuenavigator.oracle.com/

VV VALUE NAVIGATOR

Value Navigator is a set of value selling tools available to help you understand and position the value of Oracle's Solutions with our prospects. Value Navigator is made up of Four Main areas of Tools to help you at different stages in Sales Cycle.

SpotLight

ORACLE

Benefit / TCO Calculator

WHAT IS YOUR DATABASE ROADMAP?

MOVING WORKLOADS TO THE ORACLE AUTONOMOUS CLOUD WITH ACCENTURE

Include Autonomous in our Oracle Proposals

VALUE DRIVERS

Reduced Total Cost of Ownership (TCO) Up to 90% reduction

Renew and Transform the Core Database Platform

hr hev Da

Innovate faster by leveraging the Autonomous Data Cloud Services for a New Data Platform Liquid Studio and Innovation Center for Oracle Enkitec Cloud Workbench Accenture Autonomous Services

OCI Cloud Migration Toolkit

ACCENTURE

Ssuccess-based fees

experts

data experts

DIFFERENTIATORS

9,000 lift and shift professionals

Accenture Migration Factory (AMF) with

Access up to 8,000 code remediation

Accenture Enkitec Group with 120 deep

Database Health-Check and Sizing Tools

IDENTIFY OPPORTUNITY

Digital and/or Autonomous

Datacenter Consolidation or Exit, Journey to Cloud, ULA, Application and Infrastructure Contract Renewals

Transformation, Oracle Database Cloud

Consolidations, Database Upgrades and

Migrations, M&A, DR in the Cloud

Enable New Digital Capabilities,

Performance Issues, New EDW,

DW renewal, Business Data

Lake Consolidation

World's First "Self-Driving" Database

No Human Labor – Half the Cost No Human Error – 100x More Reliable

SO LET'S GET GOING!

Listen for these cues on Autonomous

Database Migration/ Consolidation

Oracle infrastructure is end-of-life, on refresh cycle

New EDW/DW/Data Lakes ------

Evaluating new Oracle/ Autonomous Capabilities Compelling event (Oracle Greenfield/ Brownfield implementation)

Complaints around how long it takes to provision environments

Client mentions looking into Cloud options

Oracle ULA renewal

HTTPS://FSDC.FI/

HOME SPEAKERS SCHEDULE GALLERY PRICING SPONSORS SPONSORING PACKAGES CONTACT

THANK YOU, HVALA, KITOS! ©

Hurry up, Only few seats are available