Oracle Database In-Memory

Fast Analytics in Real-Time

Andy Rivenes
Database In-Memory Product Management
Oracle Corporation

Email: <u>andy.rivenes@oracle.com</u> Twitter: @TheInMemoryGuy Blog: blogs.oracle.com/in-memory

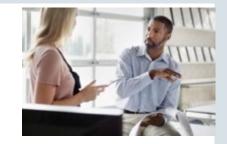
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Why Use Database In-Memory

Improved Reporting Performance Faster Reports – No Application Changes

- Organizations can use Oracle reporting/analytical applications or existing 3rd party reporting tools
 - No application or data format changes required
- Improves performance (10x typical) of reporting applications with existing data warehouse and/or data marts
- Improves performance to ensure SLA's continue to be maintained
- Increases capacity of mixed workload environments to enable additional growth and performance

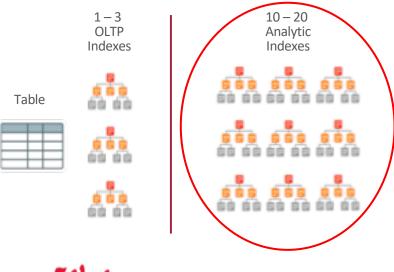


- Using Database In-Memory resulted in:
 - Triple the volume of Data
 - No changes required to Business Objects reports
 - 50X performance improvement on reports
 - Reports that took days now return in less than 1 hour

Real-Time Analytics

Use Operational Data for Real-Time Analytics

- Real-time analytics on operational data directly -without the time delay of moving data for reporting
- Enables real-time business intelligence at the point of contact
 - Delivers real-time insight, visibility and agility for critical business operations and decisions
- Enables real-time ad-hoc reporting /analysis and iterative drill-downs on operational data
- No application or data format changes required


Pricerite實惠

- Using Database In-Memory resulted in:
 - Analytic queries up to 5x faster
 - Real-time analytics dashboard

Reduced Overhead

Faster Analytics -- Less Storage Overhead

- Analytic indexes can slow down the performance of transactional applications
 - Requires significantly more database storage (on costly tier 1 storage)
 - Increases overhead due to index maintenance
- Database In-Memory allows users to eliminate analytic reporting indexes – without impacting performance
- Removing the need for analytic reporting indexes greatly simplifies tuning and reduces ongoing administration

Walgreens

- Using Database In-Memory resulted in:
 - Performance Gains: 1.8X to 12X
 - Space savings and reduced contention on DML by dropping analytic indexes

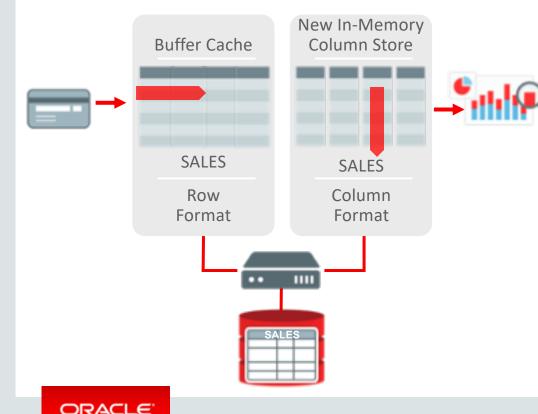
What Is Database In-Memory

Oracle Database In-Memory

Real-Time Analytics

Accelerate Mixed Workload

Risk-Free



Enable Real-Time Business Decisions Run analytics on Operational Systems

Proven Scale-Out, Availability, Security No Application Changes Not Limited by Memory

Breakthrough: Dual Format Database

- **BOTH** row and column formats for same table
- Simultaneously active and transactionally consistent
- Analytics & reporting use new in-memory Column format
- OLTP uses proven row format

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Oracle In-Memory: Simple to Implement

1. Configure Memory Capacity

• inmemory_size = XXX GB

2. Configure tables or partitions to be in memory alter table | partition ... inmemory;

3. Later drop analytic indexes to speed up OLTP

Why Columnar Formats?

- Only scan the columns involved in the query
- Columnar formats enable better compression
- Columnar data is vector oriented takes advantage of SIMD
- Can skip portions of the data if outside value ranges In-Memory storage indexes
- Oracle Database is capable of scanning billions of rows per second per core
- But don't forget, it does not accelerate DML that's why we have both formats

Why In-Memory?

- Memory is an enabler, allowing the fastest scanning possible
 - -Populating columnar data in-memory means not having to wait for I/O
- However, columnar formatted data can be placed on any storage tier:
 - -DRAM In Oracle Database SGA
 - -Flash In Exadata flash cache
 - -On-disk Engineered systems Hybrid Columnar Compression (HCC)

Where Is It Available

Database In-Memory

- Database In-Memory is an option for Oracle Database Enterprise Edition
- Database In-Memory was included in the first patchset (12.1.0.2) for 12.1 and all subsequent Oracle Database releases
- Available:
 - Database Cloud Service Virtual Machines: Extreme Performance
 - Database Cloud Service Bare Metal: Extreme Performance
 - Exadata Cloud Service
 - Exadata Cloud at Customer
 - Autonomous Data Warehouse (Flash only)
 - On-premises

Note: Database In-Memory is **not** enabled by default

Database In-Memory in the Oracle Public Cloud Easiest Platform to Try or Deploy In-Memory

Database Cloud Service – Virtual Machines

- Enterprise Extreme Performance
- Up to 48 OCPUs
- Up to 640 GB RAM per VM

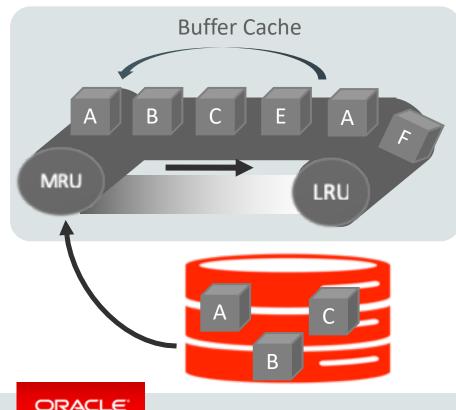
- Enterprise Extreme
 Performance
- Up to 52 OCPUs
- Up to 768 GB RAM per Database instance

- Up to 368 Cores
- Up to 5.7 TB RAM
- Over 300 TB of Flash Cache Available

Exadata Cloud at Customer

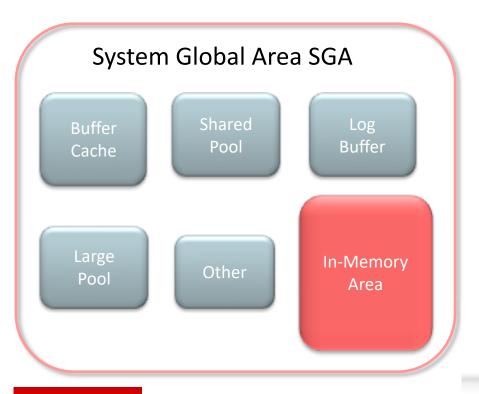
- Up to 368 Cores
- Up to 5.7 TB RAM
- Over 300 TB of Flash Cache Available

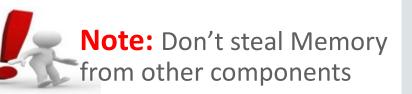
How Does Database In-Memory Work


Oracle In-Memory Columnar Technology

Pure In-Memory Columnar

- Pure in-memory columnar format
 - Not persistent, so no undo or redo is generated
- Can be enabled for table, partition, subpartition or materialized view
- 2x to 20x compression typical
- Available on all hardware platforms


In-Memory A Store – Not A Cache


- What is a cache?
- A pool of memory
- Data automatically brought into memory based on access
- Data automatically aged out
- Good example:

Oracle Database Buffer Cache

In-Memory Area: New Static Area within SGA

- Contains data in the new In-Memory Column Format
- Controlled by INMEMORY_SIZE parameter
 - Minimum size of 100MB
- Can dynamically grow larger (12.2)
- SGA_TARGET must be large enough to accommodate this area

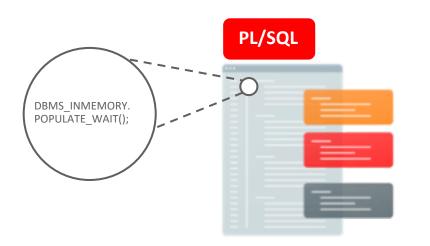
Population

 Order in which objects are populated controlled by PRIORITY subclause:

ALTER TABLE sales INMEMORY PRIORITY HIGH;

- Levels:
 - CRITICAL > HIGH > MEDIUM > LOW
 - Controls order (not speed) of populate
- Default PRIORITY is NONE
 - Populate only on first access

 Population completed by background processes


ora_w001_orcl

• Number of processes controlled by parameter:

INMEMORY_MAX_POPULATE_SERVERS

oracle@srv8	0101:~	-/In	_Memory_Beta/lesson4
			js, 23:45, 7 users, load average: 14.72, 4.14, 1.55
			unning, 586 sleeping, O stopped, O zombie 34, 0.0%ni, 0.0%id, 1.2%wa, 0.0%hi, 0.1%si, 0.0%st
			146686500k used, 2148148k free, 187748k buffers
			92k used, 2096348k free, 131648316k cached
PID USER		NI	VIRT RES SHR S %CPU %MEM TIME+ COMMOND
24673 oracle	20	0	120g 1.7g 1.6g R 79.0 1.2 6:13.27 ora_w014_orcl
24569 oracle	20	0	120g 2.5g 2.4g R 76.7 1.7 9:15.98 ora_w003_orcl
24663 oracle	20	0	1209 1.79 1.79 R 74.4 1.2 6:32.98 ora_w00z_orcl
24627 oracle	20	Ô	120g 2.0g 1.9g R 73.1 1.4 7:57.44 ora_w00o_orcl
24625 oracle	20	0	120g 2.2g 2.1g R 72.4 1.5 8:42.75 ora_w00n_orcl
24667 oracle 24571 oracle	20 20	0	120g 2.0g 1.9g R 72.1 1.4 7:31.26 ora_w011_orcl 120g 2.5g 2.3g R 71.8 1.8 9:32.78 ora_w004_orcl
24571 oracle	20	ŏ	120g 2.5g 2.3g R 71.8 1.8 9:32.78 ora_w004_orcl 120g 1.8g 1.7g R 71.1 1.3 6:41.08 ora_w00w_orcl
24669 oracle	20	ŏ	120g 2.2g 2.1g R 70.8 1.6 8:56.3 ora_w012_orcl
24683 oracle	20	ŏ	120g 1.7g 1.7g R 70.5 1.2 6:46.79 ora_w012_0121
24621 oracle	žõ	ŏ	120g 2.0g 1.9g R 70.1 1.4 8:12.00 ora_w001_orcl
24687 oracle	20	ŏ	120g 1.9g 1.8g R 70.1 1.4 7:58.64 ora_w019_orcl
24611 oracle	20	ó	120g 2.3g 2.0g R 69.8 1.6 8:13.25 ora_w00g_orcl
24619 oracle	20	Ó.	120g 1.9g 1.8g R 68.5 1.3 6:36.29 ora_w00k_orcl
24671 oracle	20	0	120g 1.9g 1.8g R 68.2 1.3 7:13.82 ora_w013_orcl
24675 oracle	20	0	120g 1.7g 1.6g R 67.5 1.2 6:42.18 ora_w015_orcl
24659 oracle	20	0	120g 1.9g 1.8g R 67.2 1.3 6:53.53 ora_w00x_orcl
24631 oracle	20	0	120g 2.3g 2.3g R 66.9 1.6 9:28.48 ora_w00p_orc1
24654 oracle	20	0	120g 1.8g 1.7g R 66.9 1.3 6:57.79 ora_w00v_orcl

Database In-Memory Wait on Populate

- New in 19c POPULATE_WAIT function in DBMS_INMEMORY package
- Based on population priority setting
- Provides an application API to ensure that objects are populated before being accessed
 - Can be used to ensure application SLAs are met

Database In-Memory Technology

Scanning and filtering data more efficiently

columns you need

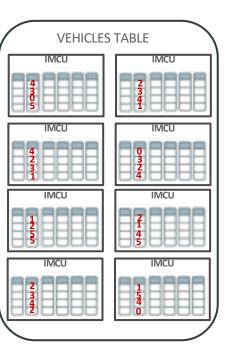
compressed format

data from the column

values in a single CPU instruction

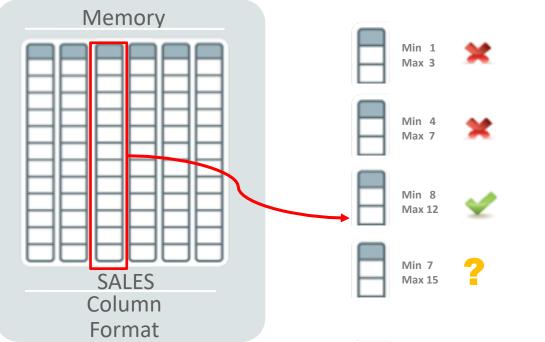
Technology: Columnar Format Access Only The Columns In The Query

- Scan only the needed columns
 - No need to read each "row" and traverse each column to find values
- All columns accessed for the table(s) in the query must be populated
 - If excluded columns are accessed the query will run against the row-store

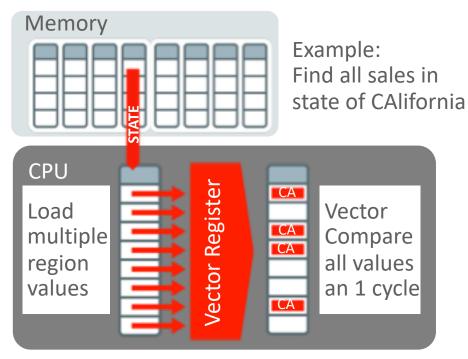


Technology: Compression

- Multiple levels of compression
 - FOR DML
 - FOR QUERY LOW/HIGH
 - FOR CAPACITY LOW/HIGH
- Query Low and High use dictionary encoding and run length encoding – evaluated directly against compressed data
- Capacity Low and High add additional "zip-like" compression


Common Dictionary

AUDI0BMW1CADILLAC2	
CADILLAC 2	
PORSCHE 3	
TESLA 4	
VW 5	


Technology: In-Memory Storage Indexes

Only look at the data you need!

- **Example:** Find all sales from stores with a store_id of 8
 - Each column is the made up of multiple column units
 - Min / max value is recorded for each column unit in a storage index
 - Storage index provides partition pruning like performance for ALL queries

Technology: SIMD Vector Processing Orders of Magnitude Faster Analytic Data Scans

> 100x Faster

- Each CPU core scans local in-memory columns
- SIMD vector instructions used to process multiple values in each instruction
 - Originally designed for graphics & science
- Billions of rows/sec scan rate per CPU core
 - Row format is millions/sec

Optimizer Enhancements

Improves all aspects of analytic queries

- Speed of memory
- Scan and Filter only the needed Columns
- Vector Instructions

Table B

• Convert Star Joins into 10X Faster Column Scans

Table A

 Search large table for values that match small table

In-Memory Aggregation

 Create In-Memory Report Outline that is Populated during Fast Scan
 Runs Reports Instantly

Optimizer: Data Scans

Pushing down filter predicates

- Many types of aggregations and filter predicates can be more efficiently evaluated during the In-Memory scan rather than after
 - Evaluate predicates directly against compressed columnar data
 - Use SIMD to evaluate predicates on multiple column values concurrently

Id Operation	Name	Rows B	ytes Cost	(%CPU) Time
0 SELECT STATEMENT * 1 TABLE ACCESS INMEMORY FU	JLL	3	961 132 961	(100) (6) 00:00:01
Predicate Information (identified	by operation	id):		
<pre>1 = inmemory(("L0_CUSTKEY"=564 "L0_ORDERPRIORITY"= filter(("L0_CUSTKEY"=5641</pre>	AND "LO_SHIPMO	PMODE"='XXX AI	AIR' AND	
"LO_ORDERPRIORITY"-	'5-LOW'))			

Optimizer: Hash Joins

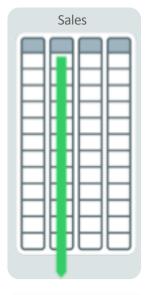
In-Memory Execution Plan with Bloom Filter

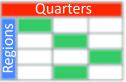
- Bloom filters enable joins to be converted into fast column scans
- Can see the Bloom filter create and use No guessing
- Same technique used to offload joins on Exadata

II	d	١	Operation	1	Name	I	Rows I	Bytes	Cost	(%CPU) I	Time	
i .	0	1	SELECT STATEMENT			ī		1	25761	(100)		
1	1	I	SORT AGGREGATE	1		I.	1	28		1		
•	z	1	HASH JOIN	1		1	18MI	503MI	25761	(10)	00:00:02	
1	3	I	JOIN FILTER CREATE	1	:BF0000	I	32 1	256	1	(0)	00:00:01	
•	4	١	TABLE ACCESS INMEMORY	Y FULLI	DATE_DIM	1	32 1	256	1	(0)	00:00:01	
1	5	I	JOIN FILTER USE	1	: BF0000	1	19MI	370MI	25708	(10)	00:00:02	
۱*	6	١	TABLE ACCESS INMEMORY	Y FULLI	LINEORDER	1	19MI	370MI	25708	(10)	00:00:02	

Optimizer: Nested Loops Joins

In-Memory Execution Plan with Nested Loops Join


- Database In-Memory can work **with** indexes (but doesn't use)
- Optimizer makes a cost based decision


Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time	1
	SELECT STATEMENT				6380	(100)		7
1	SORT AGGREGATE			43	0309	(100)		
2	NESTED LOOPS		3298	138K	6389	(1)	00:00:01	1
3	NESTED LOOPS		24932	138K	6389	(1)	88:88:81	1
* 4	TABLE ACCESS INMEMORY FULL	DATE_DIM	1	25	1	(0)	00:00:01	1
* 5	INDEX RANGE SCAN	LINEORDER_I1	24932		68	(0)	88:88:81	٦
* 6	TABLE ACCESS BY INDEX ROWID	LINEORDER	3298	59364	6388	(1)	00:00:01	1
4 -	ate Information (identified by op - inmemory("D"."D_DATE"='December filter("D"."D_DATE"='December 24 - access("L"."L0_ORDERDATE"="D"."D	24, 1996') , 1996')						

Optimizer: In-Memory Aggregation

Key Vector Use & Vector Group By

Id	Operation	Name
0	SELECT STATEMENT	
1	TEMP TABLE TRANSFORMATION	
2	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_OFD9DADAD_9873DD
3	VECTOR GROUP BY	
4	KEY VECTOR CREATE BUFFERED	:KV0000
5	PARTITION RANGE ALL	
6	TABLE ACCESS INMEMORY FULL	
7	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_OFD9DADAE_9873DD
8	VECTOR GROUP BY	
9	KEY VECTOR CREATE BUFFERED	:KV0001
10	TABLE ACCESS INMEMORY FULL	CUSTOMER_DIM
11	HASH GROUP BY	
12	HASH JOIN	
13	HASH JOIN	
14	TABLE ACCESS FULL	SYS TEMP OFD9DADAE 9873DD
15	VIEW	VW_VT_AF278325
16	VECTOR GROUP BY	
17	HASH GROUP BY	
18	KEY VECTOR USE	:KV0001
19	KEY VECTOR USE	:KV0000
20	PARTITION RANGE SUBQUERY	
21	TABLE ACCESS INMEMORY FULL	SALES_FACT
22	TABLE ACCESS FULL	SYS_TEMP_OFD9DADAD_9873DD

Scan, filter and aggregate

How Much Memory Do You Need

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Oracle In-Memory Advisor

Workload Database Usage

Total Database Time	Analytics Processing Time	Analytics Processing
(Seconds)	(Seconds)	Percentage
2990	2640	88

In-Memory Size	Percentage of Maximum SGA Size (100.0GB)	Estimated Analytics Processing Time Reduction (Seconds)	Estimated Analytics Processing Performance Improvement Factor
9.141GB	9%	2102	4.9X
8.684GB	9%	2101	4.9X
8.226GB	8%	2101	4.9X
7.769GB	8%	2100	4.9X

- In-Memory Advisor free download available on OTN for 11.2.0.3+ DBs
- Analyzes existing DB workload via AWR & ASH repositories
- Provides list of objects that would benefit most from being populated into IM column

Note: Database Tuning Pack license required

Oracle In-Memory Advisor

SQL M	SQL Text	Analytics Processing Time Used (Seconds)	Estimated Analytica Processing Time Reduction (Seconds) With Understood Memory	Estimated Analytics Processing Performance Improvement Factor With Unlimited Memory	Estimated Analytics Processing Time Reduction (Seconds) With 0.14708	Estimated Analytics Processing Performance Improvement Factor With 8:14508
fp83uwmbat8ad	select cf.custid, sum(act.purchase_amt) sales from all_card_trans act, cust_fact cf	990	696	3.4X	696	3.4X
7zkhj3xhq01w8	with gold_member_aff_cust as (select custid, aff_cc_num from cust_fact w	940	660	3.4X	660	3.4X
8p8ggufpp7699	with act as (select act.card_no, act.purchase_amt from all_card_trans act _mcc m, zipcodes z	710	450	2.7X	450	2.7X

Object Type	Object	Compression Type	Estimated in- Memory Size	Analytics Processing Seconds	Estimated Reduced Analytics Processing Seconds	Estimated Analytics Processing Performance Improvement Factor	Benefit / Cost Ratio (Reduced Analytics Processing / In-Mamory Size)
TABLE	TEST_UNCOMPZIPCODES	Memory compress for query low	1.063MB	50	33	3.0X	507741 :
SUBPARTITION	TEST_UNCOMPPARTNER_ME RCHANT_SALES.SYS_P5598.S YS_SUBP5592	Memory compress for query low	1.063MB	1	0	3.0X	36330 :
SUBPARTITION	TEST_UNCOMPPARTNER_ME RCHANT_SALES.SYS_P5598.S YS_SUBP5593	Memory compress for query low	1.063MB	1	0	3.0X	36330 :
SUBPARTITION	TEST_UNCOMPPARTNER_ME RCHANT_SALES.SYS_P5620.S YS_SUBP5615	Memory compress for query low	1.063MB	1	0	3.0X	28577 :

- Multiple sections available
 - In-Memory Size
 - SQL Statements with Analytic Benefit
 - Top object recommendations
 - All object based on memory size
 - Recommendation Rationale
 - Implementation SQL

Oracle Compression Advisor And In-Memory

DECLARE

v_blkcnt_cmp	BINARY_INTEGER;
v_blkcnt_uncmp	
v_row_cmp	BINARY_INTEGER;
v_row_uncmp	BINARY_INTEGER;
v_cmp_ratio	
v_comptype_str	
BEGIN	
DBMS_COMPRESSION	.GET_COMPRESSION_RATIO (
scratchtbsname	=> 'TS_DATA',
ownname	=> 'SSB',
objname	LINEORDER
subobjname	=> NULL,
comptype	=> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW,
comptype blkcnt_cmp	<pre>-> DEMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_cmp,</pre>
comptype blkcnt_cmp	
comptype blkcnt_cmp blkcnt_uncmp	<pre>-> DEMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_cmp,</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_cmp, -> v_blkent_unemp, -> v_row_cmp, -> v_row_unemp,</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp cmp_ratio	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_cmp, -> v_blkent_unemp, -> v_row_cmp, -> v_row_unemp, -> v_cmp_ratio,</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp cmp_ratio	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_cmp, -> v_blkent_unemp, -> v_row_cmp, -> v_row_unemp,</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp cmp_ratio comptype_str subset_numrows	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_emp, -> v_blkent_unemp, -> v_row_emp, -> v_row_unemp, -> v_comp_ratio, -> v_comptype_str, -> DBMS_COMPRESSION.COMP_RATIO_ALLROWS);</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp cmp_ratio comptype_str subset_numrows DBMS_OUTPUT.PUT_	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_emp, -> v_blkent_unemp, -> v_row_emp, -> v_row_unemp, -> v_comp_ratio, -> v_comptype_str, -> DBMS_COMPRESSION.COMP_RATIO_ALLROWS); LINE('Compression Type: ' TO_CHAR(v_comptype_str));</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp cmp_ratio comptype_str subset_numrows DBMS_OUTPUT.PUT_	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_emp, -> v_blkent_unemp, -> v_row_emp, -> v_row_unemp, -> v_comp_ratio, -> v_comptype_str, -> DBMS_COMPRESSION.COMP_RATIO_ALLROWS);</pre>
comptype blkcnt_cmp blkcnt_uncmp row_cmp row_uncmp cmp_ratio comptype_str subset_numrows DBMS_OUTPUT.PUT_	<pre>-> DBMS_COMPRESSION.COMP_INMEMORY_QUERY_LOW, -> v_blkent_emp, -> v_blkent_unemp, -> v_row_emp, -> v_row_unemp, -> v_comp_ratio, -> v_comptype_str, -> DBMS_COMPRESSION.COMP_RATIO_ALLROWS); LINE('Compression Type: ' TO_CHAR(v_comptype_str));</pre>

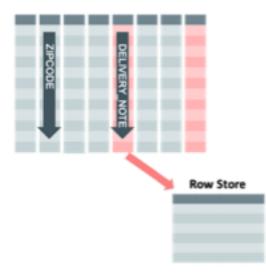
- Easy way to determine memory requirements
- Use DBMS_COMPRESSION
- Applies MEMCOMPRESS to sample set of data from a table
- Returns estimated compression ratio

What If You Don't Have Enough Memory

Compression

ALTER MATERIALIZED VIEW mv1 INMEMORY MEMCOMPRESS FOR QUERY LOW;

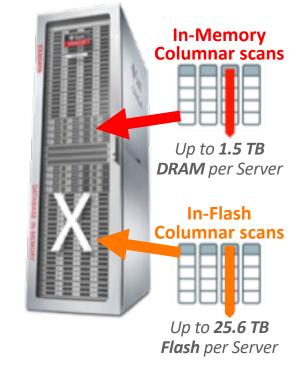
```
CREATE TABLE trades
(Name varchar(20),
Desc varchar(200))
INMEMORY
```

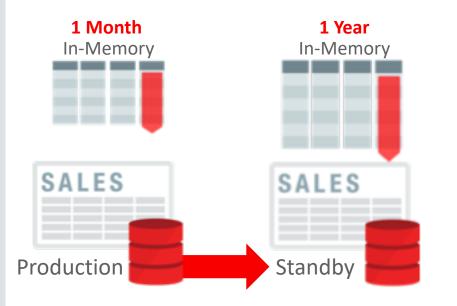

```
MEMCOMPRESS FOR DML(desc);
```

- Objects compressed during population
- New compression techniques
 - Focused on scan performance
- 2x to 20x compression typical
- Multiple levels of compression
 - FOR DML
 - FOR QUERY LOW/HIGH
 - FOR CAPACITY LOW/HIGH
- Possible to use a different level for different partitions in a table

ORACLE[®]

Columns Can Be Excluded

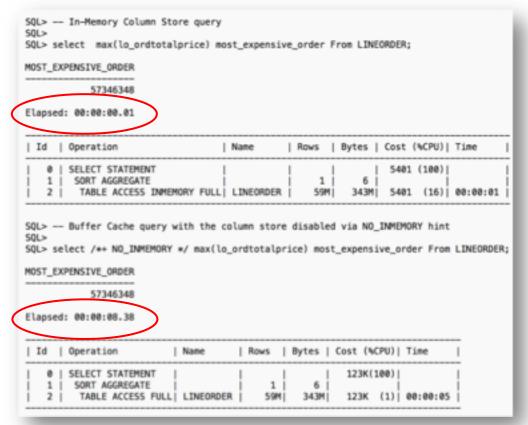

ALTER TABLE sales INMEMORY NO INMEMORY (delivery_note);


- You don't have to populate all columns
 - But, if excluded columns are accessed then the query will run against the row-store
- Two phase approach
 - 1. INMEMORY attribute on table automatically inherited by columns
 - 2. Need to remove attribute from the columns you don't want populated

Extend In-Memory Analytics into Storage

- Exadata automatically transforms table data into In-Memory DB columnar formats in Exadata Flash Cache
 - Enables fast vector processing for storage server queries
- Additional compression for OLTP compressed or uncompressed tables in flash – new in Exadata System Software 18.1
- Enables dictionary lookup and avoids processing unnecessary rows
- Smart Scan results sent back to database in In-Memory Columnar format
 - Reduces Database node CPU utilization
- Uniquely optimizes next generation Flash as memory

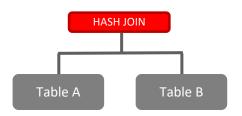
Mixed Workload: In-Memory on Active Data Guard


- Real-time analytics with no impact on primary database
- Makes full use of memory on standby system
- Standby can populate different data than production database
- Available on Exadata and PaaS Cloud Services

Why Not Just Cache The Table In The Buffer Cache

Compare Column-store to Row-store

How Do You Tell If It's Working


Which Queries Benefit From Database In-Memory?

For a non-trivial amount of rows and execution time, when a significant amount of time ...

is spent accessing data

	-	

is spent joining data

is spent aggregating data

Use Time Based Analysis Techniques To Evaluate Benefit SQL Monitor Active Reports

- Shows how SQL was executed and where time was spent
- See blogs.oracle.com/In-Memory for a technical brief on creating SQL Monitor active reports

				(everal)						10 5	10 Statistics				
Deculor Started		24	4(*), 5	. 6	J	Duration Database Time PL/SQL & Jane Activity %	h		1.0s 0.0s	ID R	for Get loguest O Byte				
Details															
Pan Statistics Pan Hash Value 2	An A	Note				-						17. 5.	10	1.0.0	
Pan Satisfica Pan Nati Volue 2 Operation	08703965 📄 Per		u.,	Estimate-	Cust	Treative(1e)	Det	Atual	Remo:	Temp (0.	10 Ma.,	10	Actually %	
Pan Batistics Ren Hah Value 2 Operation D Value? STATE	06723363 🔒 Per	Note	0		Cast	Timeline(1s)	Esec	Atual	Herno: .	Temp (0.	10 Ma.,	10	Actually %	
Part Retistion Ret Halt Value 2 Operation D SEACT CTACK D SEACT CTACK	06723363 🔒 Per	Note	U 0 1 2	Estimate	Cont	Trueline(14)	Eee1	Actual	Hemo: .	Temp (0.	10 fe -	10	Actually %	

Accessing Data: Scan & filter data in-memory

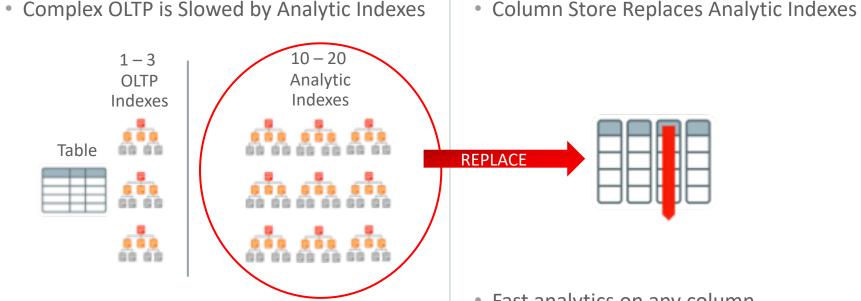
Ieneral		Time & Wait Sta	tistics			10 51	10 Statistics						
SQL Text SELECT /*+ NO_PARALLE Descution Started Thu Jan 12, 2017 1:51:44 ast Refresh Time Thu Jan 12, 2017 1:51:45 Execution ID 16777216 User SSB	PM	nt(*), S	U E		Duration Database Time PL/SQL & Java Activity %	h		1.0s 0.9s 100	10 Re	er Gets a quests 0) Bytes 0		3	
Fetch Calls 1												Time now ent scann	
Details												filtering d	
Plan Statistics 🔆 Plan 📐 Acti Plan Hash Value 2267213921 📄 Plan													at
Operation	Name	Li	Estimate	Cost	Timeline(1s)	Exec	Actual	Memor	Temp (0. 10	Re 10	y %	
SELECT STATEMENT		0				1	1					N	
SORT AGGREGATE		1	1			1	1					N	
	LINEORDER	2	10M	12K		1	10M					100	

Joining Data: Hash join with Bloom filters in-memory

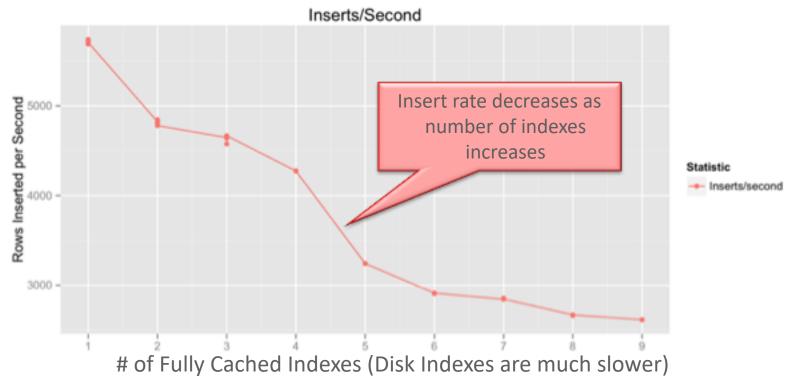
eneral					Time & Wait Statistic	-			10 Statistics				
becution ast Refr	SQL Text SELECT /*+ NO_PARALLEL NO_VECTO in Started Thu Jan 19, 2017 4:09:10 PM esh Time Thu Jan 19, 2017 4:09:14 PM oution ID 16777216	OR_TRANSFO	-		Duration Database Time PL/SQL & Java Os Activity %			4.0s 3.7s	Buffer Gets ID Requests ID Bytes				
	User SS8 etch Calls 4			J					/lajority now s				
Details	l.								scanni	•			
-	Statistics 🔆 Plan 📐 Activity 🔀	Metrics							filtering	•) —	
Plan Ha	Statistics 🔆 Plan 📐 Activity 🔀 ash Value 322496559 📄 Plan Note Operation	Name	Etin	Cost	Timeline(4s)	Evec	Actual Rows	Memory (Max)		g data		Activity %	
Plan Ha	ash Value 322496559 🎦 Plan Note		Estin	Cost	Timeline(4s)	Dec	Actual Rows 40	Memory (Max)	filterin	g data	a	Activity %	
Plan Ha	ash Value 322496559 Plan Note Operation		Estim 1,000	Cost 128K	Timeline(4s)	Exec		Memory (Max) 1HB	filterin	g data	a	Activity %	
Plan Ha	Ash Value 322496559 Plan Note Operation E SELECT STATEMENT				Timeline(4s)	Exec 1 1	40		filterin	g data	a	Activity %	
Plan Ha	Ash Value 322496559 Plan Note Operation SELECT STATEMENT HASH GROUP BY		1,000	128K	Timeline(4s)	Exec 1 1 1	40	148	filtering	g data	a		
Plan Ha	Ash Value 322496559 Plan Note Operation SELECT STATEMENT HASH GROUP BY HASH JOIN	Name	1,000 842K	128K 128K 237	Timeline(4s)	Exec 1 1 1 1 1	40 40 584K	148	filtering	g data	a		
Plan Ha	Ash Value 322496559 Plan Note Operation SELECT STATEMENT HASH GROUP BY HASH JOIN TABLE ACCESS INMEMORY FULL	Name	1,000 942K 390K 4,192K	128K 128K 237	Timeline(4s)	Eec 1 1 1 1 1 1	40 40 584K 380K	148 1648	filtering	g data	a		
Plan Ha	Ash Value 322496559 Plan Note Operation SELECT STATEMENT HASH GROUP BY HASH JOIN TABLE ACCESS INMEMORY FULL HASH JOIN HASH JOIN	Name SuppLIER BF0000	1,000 942K 390K 4,192K	128K 128K 237 117K	Timeline(4s)	Esec 1 1 1 1 1 1 1 1	40 40 584K 380K 2,922K	148 1648	filtering	g data	a		
Plan Ha	Ash Value 322496559 Plan Note Operation E SELECT STATEMENT E HASH CROUP BY E HASH JOIN TABLE ACCESS INMEMORY FULL E HASH JOIN E JOIN FELTER CREATE	Name SuppLIER BF0000	1,000 842K 380K 4,192K 80K 80K	128K 128K 237 117K 212	-	Esec	40 40 584K 380K 2,922K 80K	148 1648	filtering	g data	a		

Aggregating Data: Vector Group By with in-memory

Overview	neral Tena & Wall Radiation							10 Balielina			
		_									
	1. Text: SELECT /*- NO_TABALLEL HON/TOR */ d.d., year, c.c., larted: Wed Jan 18, 2017 10:36:54 /h	Duration Out trace Time					5.1m	Muffer Gata			
	Time: Weak Jan 18, 2017 10:42-08 Ph	PLOT D I	-					10 Rules E			
Desiul	an D LEVYILLE	Address to	_				100				
	Cale 4										
	Name 1										
Details											
Bar B	attation by Part & Attaily 100 Parties										
	Ware 10488-0438										
Line ID		Name	Estimated Rove	Cett	Timeline(30ks)	Deculiers		Henory (Her)	Terry (Har)	QL. 101	Requests 20 Bytes Activity %
	B SELECT STATEMENT					1	ж				
1	ID TEMP THREE TRANSPORMATION					1	35				
2	B 1040 KE SELECT (CLASOR DUANTON HERORY)	DIS_TONP_DIOXO66A				1	1	148			
6	TONO NE BETECLA (CONSON DOWNLOOK MEMORIA)	DIS_TEMP_DIOROBA				1	1	148			
10	B 10A0 45 SELECT (SURSON DUANTION HEMORY)	\$15,15HP_\$100066A				1	1	148			Group Pyric now a co
34	IDAD AS SELECT (SURSON DUANTION HEMORY)	\$15,75HP_\$P08046A				1	1	248			Group By is now a sca
18	SOLT CHOUP BY		62	1574		1	35	43			& filter operation
19	D H46H J00N		62	557K		1	35	669K3			& filler operation
20	THREE ACCESS PULL	\$15,15HP_\$100066A	8	5		1	0				
28	C HARRY XOEN		8	5576		1	16	148			
22	Contract (Contraction)		,	6		1	7				
29	© 701W	V8.V7.8F2.87	62	557K		1	35				
30	B viscos cilcul av		- 62	557K		1	38	2403		•	
26	B HADY CHOUP BY		0	5576		1	0				
19	B KEY VACTOR USE	+1/0000	3094	5576		1	3796				1.00
39	B KEY VECTOR LISE	×6/0081	30994	557K		1	22894			•	
34	B KEY VECTOR USE	xiv0080	2094	1574		1	22894				V
26	E KEY KECTOR USE	(6/0002	LLDW	557K		1	2284				
36	THRUE ACCESS INHEHORY FULL	LINEDADER, SINGLE	5,700H	55.7K		_	3384				


What about indexes

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |


Database In-Memory Accelerates Mixed Workloads

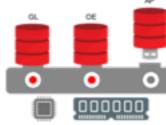
 Inserting one row into a table requires updating 10-20 analytic indexes: Slow!

- Fast analytics on any column
- Column Store not persistent so update cost is much lower

OLTP is Slowed Down by Analytic Indexes

Does It Work With Other Oracle Database Features

Database In-Memory: Other Features

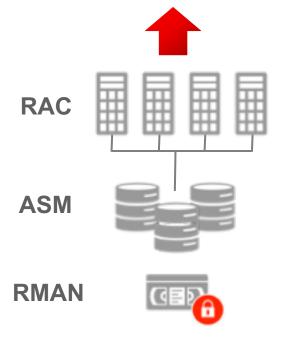

Scale-Out

Scale-Up

- Scale-Out Across Servers to Grow Memory and CPUs
- In-Memory Queries
 Parallelized Across Servers
- Scale-Up on large SMPs
 NUMA Optimized

Consolidation

- Frees up memory and CPU
- Shares memory and background
 - processes
- Column store defined at CDB level


Combine with Flash and Disk

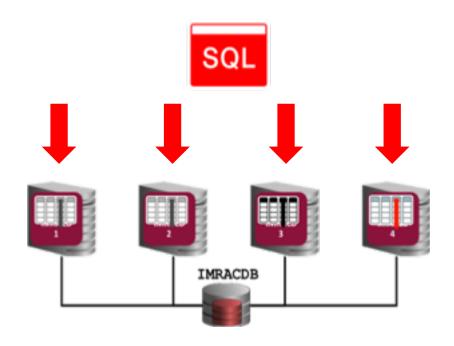
- Easily place data on most cost effective tier
- Simultaneously Achieve:
 - Speed of DRAM
 - I/Os of Flash
 - Cost of Disk

Database In-Memory: Industrial Strength Availability

Data Guard & GoldenGate

- Pure In-Memory format does not change Oracle's storage format, logging, backup, recovery, etc.
- All Oracle's proven availability technologies work transparently
- Protection from all failures
 - Node, site, corruption, human error, etc.

How does Database In-Memory Work With RAC

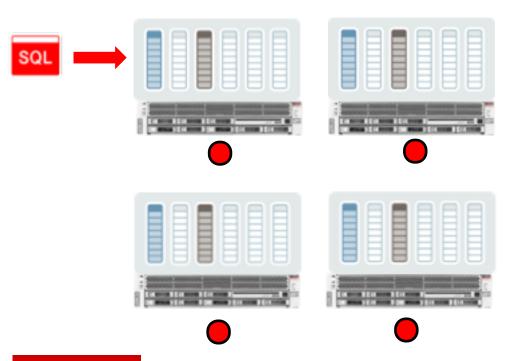


Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

RAC : Scale-Out In-Memory Database to Any Size

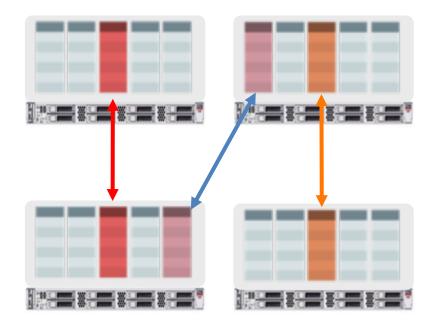
- Scale-Out across servers to grow memory and CPUs
- Shared nothing architecture
- IMCUs not shipped across interconnect – cache fusion is not in play!
- In-Memory queries are parallelized across servers to access local column data

RAC : In-Memory and Distribution of Data


ALTER TABLE sales INMEMORY;

ALTER TABLE sales INMEMORY DISTRIBUTE BY PARTITION;

ALTER TABLE sales INMEMORY DISTRIBUTE ROWID RANGE;


- Distribution allows in memory segments larger than individual instance memory
- Policy is automatic (*Distribute AUTO*) or user-specifiable
- Controlled by DISTRIBUTE subclause
 - Distribute by rowid range
 - Distribute by partition
 - Distribute by subpartition
- Goal: Ensure Even Distribution

RAC : Database In-Memory Queries in a RAC Environment

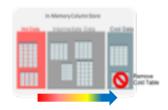
- Shared nothing architecture means Parallel Query must be used to access data
- Must have a DOP greater than or equal to the number of column stores
- Query coordinator automatically starts parallel server processes on the correct nodes (Requires Auto DOP in 12.1.0.2)

Engineered Systems: Unique Fault Tolerance

Only Available on Engineered Systems

- Similar to storage mirroring
- Duplicate in-memory columns on another node
 - Enabled per table/partition
 - Application transparent
- Performance preserved by using duplicate during a node failure
- Performance can be improved by performing joins within each node (partial partition wise joins)

What's New



Database In-Memory New Features

Performance

- In-Memory Expressions
- Join Groups
- In-Memory Dynamic Scans
- In-Memory Optimized Arithmetic

Managability

- Automatic Data Optimization
- Automatic In-Memory

Expanded Capacity

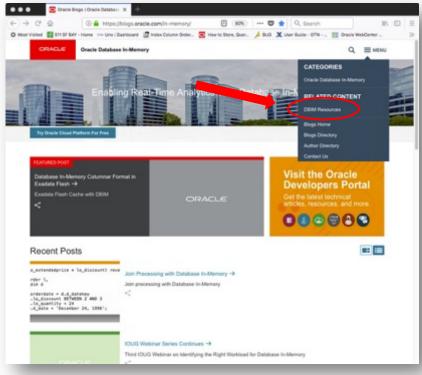
- Exadata Flash
- Active Data Guard
- External Tables

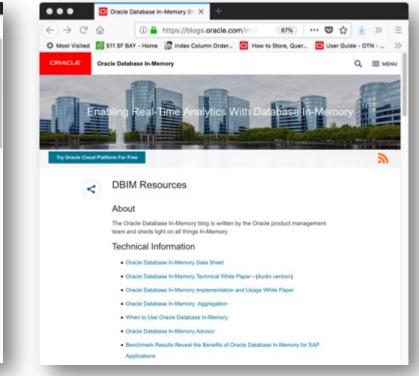
How Have Customers Benefited From In-Memory

How Customers Use Database In-Memory

AT&T WiFi – Data Warehouse 🛛 🕥 atst Wi-Fi	Villeroy & Boch – SAP BW				
 Business Objects reports 100X faster 	 SAP BW COPA queries 30 – 33X faster 				
 ETL processes improved by 50% faster 	 SAP Transaction list queries 4 – 4,800X faster 				
 No changes to SAP Business Objects reports 	 Avoided expensive & risky upgrade to S4/Hana 				
BOSCH – SAP CRM 💿 BOSCH	Die Mobiliar – Mixed Workload Die Mobiliar				
BOSCH – SAP CRMBOSCH• Dropped all custom indexes	 Die Mobiliar – Mixed Workload <i>Die</i> Mobiliar Analytic queries 50-200X faster 				
Dropped all custom indexes	 Analytic queries 50-200X faster 				

How Customers Use Database In-Memory


 Mankind Pharma – Mixed Workload Analytical reports 11x faster Dropping indexes improved OLTP 90% reduction in database size 	 Shanghai Customs – Mixed Workload Processes Clearance 43x Faster Improves Declaration-Services Efficiency Reduced Costs
 LION – SAP ERP Analytic queries 4X faster Transactions 2X faster Analytic queries now possible on 100s of Millions of Point-of-Sales Transactions 	 Lufthansa – Reporting Application Content of Solutions Analytic queries up to 100x faster Improved data ingest performance Reduction in database size


Where Can You Get More Information

https://blogs.oracle.com/in-memory/dbim-resources

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Additional Resources

Join the Conversation

https://twitter.com/db_inmemory

https://twitter.com/TheInMemoryGuy

http://www.oracle.com/goto/dbim.html

Database In-Memory Information

Database In-Memory Blog

oracle.com – Database In-Memory

Database In-Memory YouTube Channel

Ask TOM Database In-Memory Office Hours

Database In-Memory Guide (Documentation)