



#### **Capacity Planning – without tooling**

(Please keep IT simple)

# Piet de Visser The Simple Oracle DBA







## Agenda (45 minutes)

#### **PdVBV**

17:00 18:00 19:00 19:25 TEST 123 20:00 20:27 TEST456 21:00

Calendrian 🗷 🗨 🖎

**Capacity Planning** 

(= Everything)

**Anecdotes** 

(I'm sure you have them too)

The quick fix-trick

(Q & D)

More elaborated tricks

(better ...?)

**Discussion** 

(Do Challenge!)





#### Why talk "Capacity"

- Capacity = Performance (= hot, right?)
  - System Snappy; Users Happy … ?
  - Do batches run inside timeslot ?
  - Can we patch/upgrade inside 30min ?
- Capacity is Management-level guff. Budget...
  - Do we have enough kit ?
  - (SLAs, targets, requirements..)
  - Can we add more plants / trucks / customers ?
  - Will it still work in 6 12 18 24 months?
- Capacity is rarely right just live with that
  - %usr, %idle, %steal : at least one will be too high...





#### Anecdotes...

- You want 17 or 1800 tx/sec ?
  - Java ???... (nuf said)
- Looking at 1TB (through bathroom window)
  - Processing 1M lines/hr...
- "our system is getting full"...
  - Heavy SQL in OLTP (we got lucky fixable)
- KIWI but not for (very)dynamic sql
- KIWI but not for single-threaded processes.
- Check Jonathan's ppt about EXA, "The Answer"
- ...There will always be "capacity" problems.







#### **Optional Intermezzo: Poll for audience**

**PdVBV** 

•

## Thank You!









## Capacity: Demand and Supply (and you)

- Capacity: Demand What do you need done
  - Get the Business numbers Future Projections!
  - Nr Customers (and activity)
  - Nr orders / nr movements / amount of history...



- Capacity: supply What kit do you have.
  - Hardware : CPU / Memory / Storage (Exa??)
  - Software: Which system/software will be used?
- Capacity: can Supply match Demand?
  - or your job is in danger,
  - Or... you can make a fortune touting Exa.. (or cloud)





#### **Capacity: Demand... Measure + Verify**

#### **PdVBV**

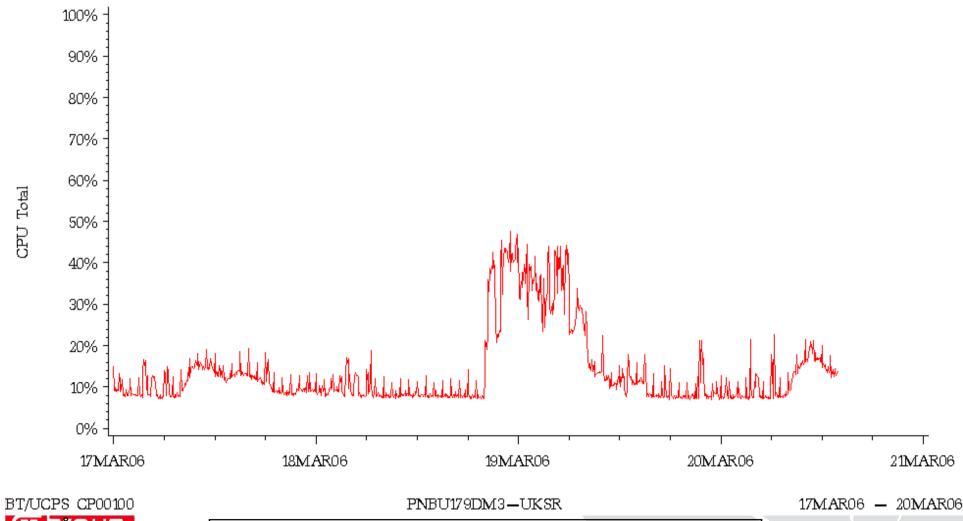
4SYNERGY

- Business says: 1 order per min ... average...
  - Verify in the system.



- (I know: sometimes, the measurement just isnt..)
- (I know: sometimes you cannot test)
- Short: Measure!
  - How much work in 1 unit (1 day, 1 order, 1 report).
  - Use \_only\_ available tools (don't fall for fancy stuff)
  - SQL / Statspack / AWR
  - vmstat / sar : how much is used...







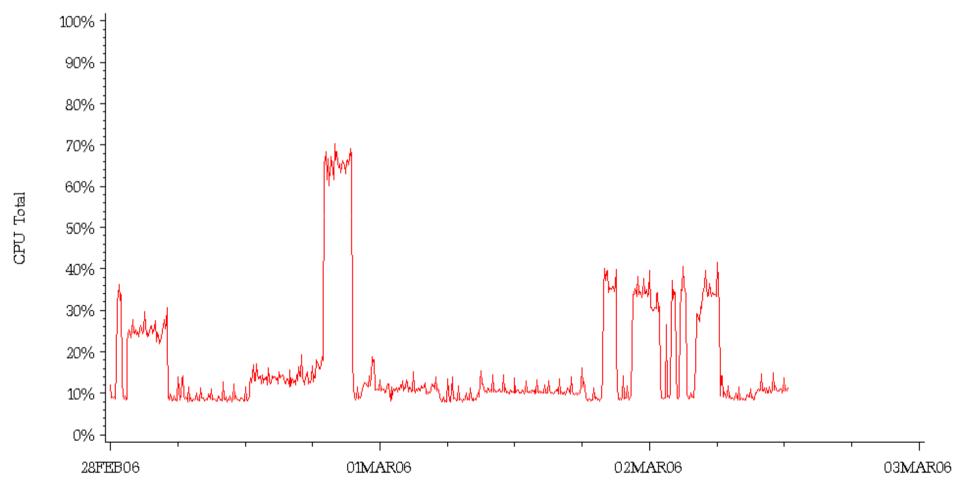

#### **BAU, OLTP instance**

#### **PdVBV**

#### **CPU** Utilisation






Business As Usual... Typical CPU usage of database with some anomalies.



#### **BAU - Batch**

#### **PdVBV**

#### **CPU** Utilisation

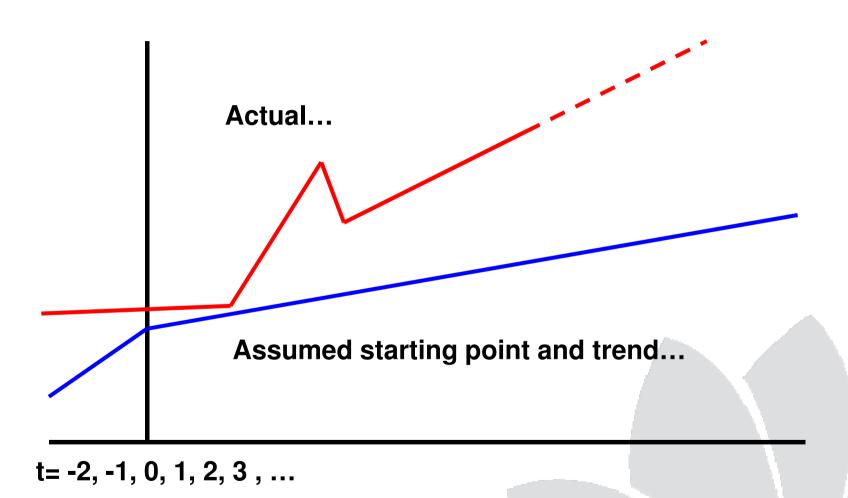


BT/UCPS CP00100

PNBU180DM3-UKSR

28FEB06 - 02MAR06

Typical batch - spot the impact of the eways and the index.



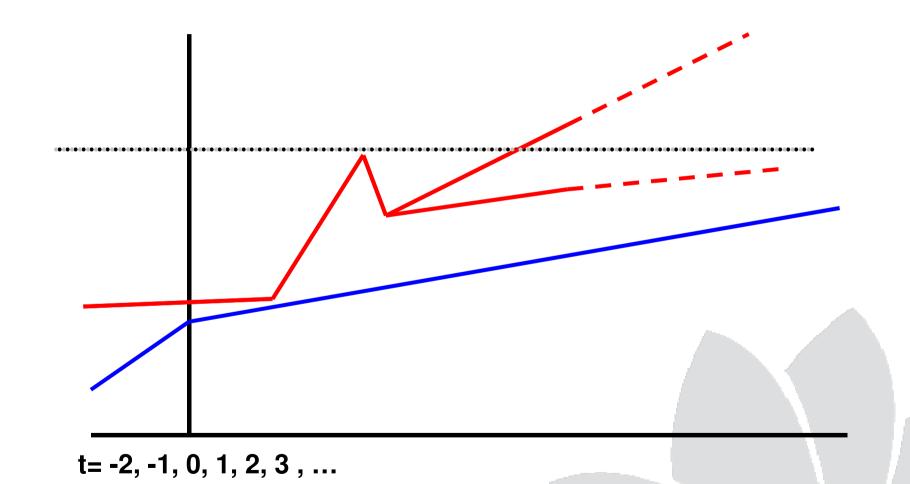

#### Capacity: Demand; Measure + Verify .... **PdVBV**

4 SYNERGY

- Measure, Trust + verify
  - Go verify with SQL\*plus, sar and .. xls
- Activity per Day / Week / Month
  - 100K movements = 1 per second... (average!)
- MB growth per day / week / month
  - 20M /day in SJO, or 1G/day in SGP...
- System usage (SAR or OEM)
  - And XLS (make some simple plots)
  - Beware of %Steal







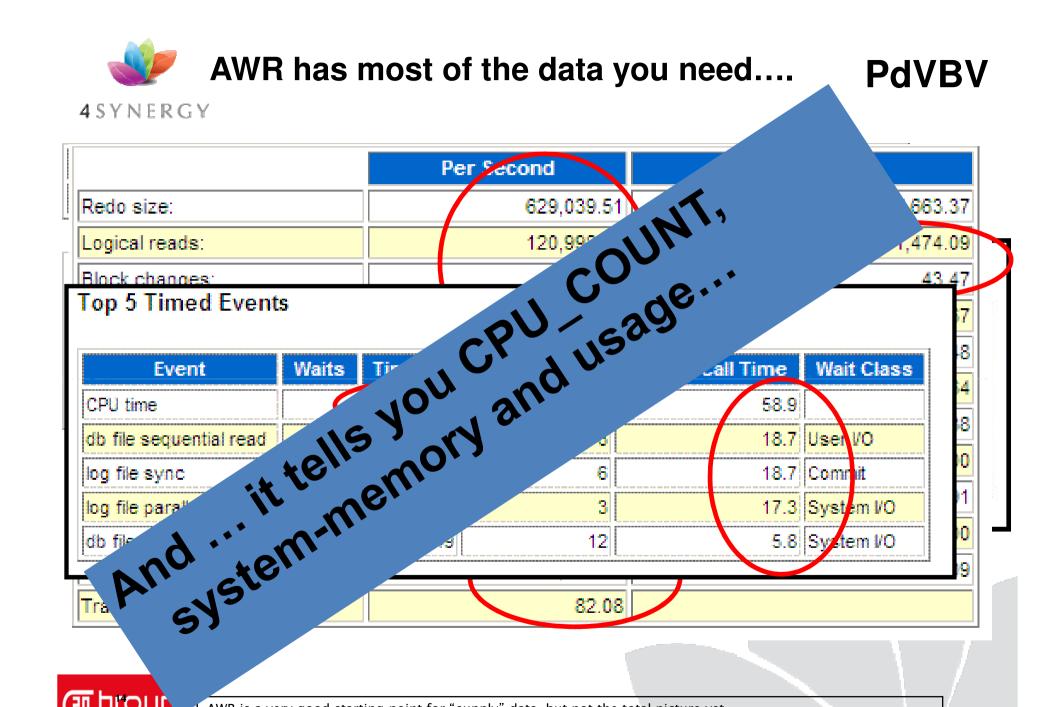

Just let this speak for itself.... (are YOU measuring your usage?)



# The Ceiling – Iron or Brains?








Just let this speak for itself.... (if You hit the ceiling: can you plot graph and indicate problem?)

#### **Capacity: Verify Supply... (the iron)**

- How big is your system
  - (very often, nowadays just big…)
  - Cat /proc/cpuinfo, meminfo
  - Statspack (will tell you!)
  - Surprise: you use 2G out of a 24G server
  - Surprise: your db does 10min of work in 60min...
- Pitfalls:
  - Virtual
  - Slowness in storage
  - Peak-loads (10am and 10pm)









#### Go to detail: SQL – how much work...

#### **PdVBV**

#### 4 SYNERGY

- What generates my (DB) workload?
  - SQL, the statements that tell the DB what to do!
  - Do you recognize the gries in the awrrpt ?
  - (e.g. are you looking at the right report)



- From Statspack / AWR / V\_\$SQL / Traces
  - What <u>Time</u> (ela, cpu) does a stmnt take (aggregated!)
  - How much Work does a stmnt do (gets, rows-processed)
  - What job, what <u>Unit</u> of work was done?
  - Is that Reasonable … ? (fast? scaleable?)
- (Expected) Frequency and "workload" for a qry?





#### Capacity: Matching...

- After Quick + Dirty measurements (guesstimates)
  - You know "demand"
  - You know "supply"
- Does it match?
  - Only you can answer (and the users!)
- If not...
  - Performance-tweaking.. (op-tuh-my-sation)
  - KIWI...
  - Mostly a combination.
  - (example: eliminating the report-DB Totally fixed it all...)







#### SQL ordered by Gets

Resources reported for PL/SQL code includ

Total Buffer Gets: 32,612,884

· Captured SQL account for 91.2% of Total

| Buffer Gets | Executions | Gets per Exec | % |
|-------------|------------|---------------|---|
| 32,570,957  | 1,363      | 23,896.52     |   |
| 1,851,387   | 1,765      | 1,048.94      |   |
| 1,828,401   | 1,765      | 1,035.92      |   |
| 1,764,845   | 1,765      | 999.91        |   |
| 1,648,859   | 1,765      | 934.20        |   |
| 1,352,149   | 1,765      | 766.09        |   |
| 1,245,977   | 1,765      | 705.94        |   |
|             |            |               |   |

#### SQL ordered by Executions

Total Executions: 548,950

Captured SQL account for 54.7% of Total

| Executions | Rows Processed | Rows per Exec | CI |
|------------|----------------|---------------|----|
| 77,294     | 77,294         | 1.00          |    |
| 72,676     | 0              | 0.00          |    |
| 60,498     | 60,498         | 1.00          |    |
| 28,658     | 28,658         | 1.00          |    |
| 10,330     | 10,330         | 1.00          |    |
| 1,765      | 1,765          | 1.00          |    |
| 1,765      | 1,765          | 1.00          |    |
| 1,765      | 1,765          | 1.00          |    |
| 1,765      | 1,765          | 1.00          |    |
| 1,765      | 1,765          | 1.00          |    |

SQL > Select buffer\_gets, executions, rows\_processed
From V\$SQL where ... order by ...;





#### My hobbyhorse: Fast - and Scaleable

#### **PdVBV**

Individual actions; must be efficient

C reate / Insert (1x)

R ead / Queries (Nx, which fields, why?

U pdate (Nx, which fields?)

D elete (1x, bulk/del old data?)

.... Efficient ? ... SQL and Indexes!



Concurrent actions; must remain efficient Limit locks (no blocking of others)
No unusable indexes (exhange part..!)
No hot-blocks (buffer busy waits).







#### Ratios per Statement (just mine...)

**PdVBV** 

• Gets / Row <10

Realistically, any data is accessed via Index!



- How much work (CPU, IO) will it take.
- For a million rows, allow some more work...
- But: be careful if executed at high-frequency.
- Gets / Transaction <1000</li>
  - Why? Efficiency! And Limit the time of locking.
  - Problem: more difficult to measure in detail.







#### Ratio to find Locking...

- Special case: TX-enqueue waits.
  - Table / Segment can be found from segment-stats
  - Which Stmnt ?... use a ratio!



- CPU-time / Elapsed time (percentage) >50 %
  - Notably: looking for <u>Concurrency</u> or IO problems
  - Also: if it waits for anything but CPU
  - (buff-busy, log-file-sync, log-file-par-wrt)
- To fix locks: often means talking to Arch and Dev...
  - Start transaction at latest possible moment.
  - Avoid running totals and similar constructs if possible.





#### Fixes, if needed...

- "Elimination": don't run the component.
  - Best option!
- "Optimization": make it faster.
  - Realistic option (hopefully)
- "Containment": run the item less frequent.
  - (= Worst option; It Will Be Back!
- Do-Nothing (KIWI):
  - IF... you are confident about workload and hardware.
  - Dynanic-SQL...? Hmm; Single Threaded work...? Never!







#### **Capacity: Simple (please)**

- Capacity: Demand What do you need done
  - Get simple numbers
  - Project into future
- Capacity: supply What kit do you have.
  - Find Simple numbers
  - Verify!
- Capacity: Match ???
  - Tip: Plan simply, and carry some big kit...





## Don't Take my word for it...

#### **PdVBV**

Tahiti.oracle.com: start with concept-guides

**Technet (but be critical)** 

**Oracle-L: real world stuff** 

www.Bloggingaboutoracle.org (company ramblings)

<u>SimpleOracleDba . Blogspot . com</u> (my ramblings)

Do some testing yourself ...

**Goethe: Simplicity Shows the Master** 





- Questions?
- Reactions?
- Experiences from the audience ?





Placeholder slide to indicate

• END

of this ppt,

Remainder is just notes















You do APEX!

• You have skills...



